Influence of abdominal gas on the Boyle's law determination of thoracic gas volume

1978 ◽  
Vol 44 (3) ◽  
pp. 469-473 ◽  
Author(s):  
R. Brown ◽  
F. G. Hoppin ◽  
R. H. Ingram ◽  
N. A. Saunders ◽  
E. R. McFadden

In a body plethysmograph we have demonstrated differences in total lung capacity (TLC) derived from panting maneuvers performed at different levels in the vital capacity. In almost all cases, the discrepancies were due to the magnitude of the abdominal gas volume (AGV) and the relative magnitude of abdominal and thoracic pressure swings during the panting mandeuver. When panting was performed at functional residual capacity (FRC), the effect of AGV compression on the determination of thoracid gas volume (TGV) was small. Of 11 individuals studied 2 were known to have mild asthma. Compression and decompression of AGV appeared to be an insufficient explanation for discrepancies in derived TLC's in these two, suggesting that other as yet unidentified factors may influence the plethysmographic determination of TGV.

2008 ◽  
Vol 105 (6) ◽  
pp. 1864-1872 ◽  
Author(s):  
Z. Hantos ◽  
Á. Adamicza ◽  
T. Z. Jánosi ◽  
M. V. Szabari ◽  
J. Tolnai ◽  
...  

Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH2O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema.


1982 ◽  
Vol 52 (3) ◽  
pp. 798-801 ◽  
Author(s):  
A. Harf ◽  
H. Lorino ◽  
G. Atlan ◽  
A. M. Lorino ◽  
D. Laurent

To improve the computer determination of thoracic gas volume (TGV), two new approaches were worked out. 1) A new program was designed, which overcomes the difficulties encountered in the time recognition of the panting maneuver and rules out the artifacts. Such a procedure is based on the data analysis in the pressure-volume time derivatives plane. 2) A hyperbolic fitting of the signals recorded during the panting maneuver was introduced. This last procedure, lying on Boyle's law, has proved to be useful in case of large mouth pressure changes. In fact the error induced by the conventional linear fitting may reach 500 ml (9% of the TGV value).


1988 ◽  
Vol 65 (3) ◽  
pp. 1444-1448
Author(s):  
B. D. Lyttle ◽  
C. Duvivier ◽  
G. M. Glass ◽  
M. E. Wohl ◽  
J. J. Fredberg

R. Peslin et al. measured thoracic gas volume (TGV) in adults using a new method employing low-frequency ambient pressure changes (APC) (J. Appl. Physiol. 62: 359-363, 1987). We extended that methodology and then tested the hypothesis that this technique was applicable to small mammals. TGV [at functional residual capacity (FRC)] by APC and by conventional Boyle's law was compared in 12 rabbits. The rabbits were anesthetized, tracheostomized, intubated, and placed in a pressure plethysmograph. Although in the method of Peslin et al. box pressure was oscillated at a single frequency, in our extension box pressure was oscillated simultaneously at two frequencies (0.1 and 0.2 Hz). Flow at the airway opening consisted of rapid events due to spontaneous breathing, superposed on slower events due to the alveolar gas compression. The slower events were analyzed to yield alveolar gas compliance and, by Boyle's law, FRC. FRC by APC was highly correlated to FRC by conventional plethysmography (r = 0.85). Compared with the methodology of Peslin et al., our extension relaxes a key limitation and yields systematically higher estimates of FRC. We conclude that this method is applicable to small mammals, despite an inherently more compliant chest wall, and that the methodological extension improves the estimate of FRC.


1962 ◽  
Vol 17 (6) ◽  
pp. 871-873 ◽  
Author(s):  
Donald F. Tierney ◽  
Jay A. Nadel

We made concurrent measurements of the functional residual capacity (FRC) with the body plethysmograph (thoracic gas volume) and by 7-min and prolonged open-circuit nitrogen dilution methods (communicating gas volume). The mean difference between the 7-min communicating gas volume and the thoracic gas volume in 13 healthy subjects was only 0.13 liters. The thoracic gas volume averaged 0.99 liters larger than the communicating gas volume after 7 min of O2 breathing in 13 patients with emphysema. The communicating gas volume at 12–18 min was the same as the thoracic gas volume in 11 of 13 patients but was smaller in the other 2. When the thoracic gas volume was used to measure FRC, the total lung capacity averaged 142% of predicted normal in 13 patients with emphysema. Submitted on January 4, 1962


PEDIATRICS ◽  
1959 ◽  
Vol 24 (2) ◽  
pp. 181-193
Author(s):  
C. D. Cook ◽  
P. J. Helliesen ◽  
L. Kulczycki ◽  
H. Barrie ◽  
L. Friedlander ◽  
...  

Tidal volume, respiratory rate and lung volumes have been measured in 64 patients with cystic fibrosis of the pancreas while lung compliance and resistance were measured in 42 of these. Serial studies of lung volumes were done in 43. Tidal volume was reduced and the respiratory rate increased only in the most severely ill patients. Excluding the three patients with lobectomies, residual volume and functional residual capacity were found to be significantly increased in 46 and 21%, respectively. These changes correlated well with the roentgenographic evaluation of emphysema. Vital capacity was significantly reduced in 34% while total lung capacity was, on the average, relatively unchanged. Seventy per cent of the 61 patients had a signficantly elevated RV/TLC ratio. Lung compliance was significantly reduced in only the most severely ill patients but resistance was significantly increased in 35% of the patients studied. The serial studies of lung volumes showed no consistent trends among the groups of patients in the period between studies. However, 10% of the surviving patients showed evidence of significant improvement while 15% deteriorated. [See Fig. 8. in Source Pdf.] Although there were individual discrepancies, there was a definite correlation between the clinical evaluation and tests of respiratory function, especially the changes in residual volume, the vital capacity, RV/ TLC ratio and the lung compliance and resistance.


1985 ◽  
Vol 58 (6) ◽  
pp. 1783-1787 ◽  
Author(s):  
L. J. Folinsbee ◽  
J. F. Bedi ◽  
S. M. Horvath

We exposed 22 healthy adult nonsmoking male subjects for 2 h to filtered air, 1.0 ppm sulfur dioxide (SO2), 0.3 ppm ozone (O3), or the combination of 1.0 ppm SO2 + 0.3 ppm O3. We hypothesized that exposure to near-threshold concentrations of these pollutants would allow us to observe any interaction between the two pollutants that might have been masked by the more obvious response to the higher concentrations of O3 used in previous studies. Each subject alternated 30-min treadmill exercise with 10-min rest periods for the 2 h. The average exercise ventilation measured during the last 5 min of exercise was 38 1/min (BTPS). Forced expiratory maneuvers were performed before exposure and 5 min after each of the three exercise periods. Maximum voluntary ventilation, He dilution functional residual capacity, thoracic gas volume, and airway resistance were measured before and after the exposure. After O3 exposure alone, forced expiratory measurements (FVC, FEV1.0, and FEF25–75%) were significantly decreased. The combined exposure to SO2 + O3 produced similar but smaller decreases in these measures. There were small but significant differences between the O3 and the O3 + SO2 exposure for FVC, FEV1.0, FEV2.0, FEV3.0, and FEF25–75% at the end of the 2-h exposure. We conclude that, with these pollutant concentrations, there is no additive or synergistic effect of the two pollutants on pulmonary function.


1982 ◽  
Vol 53 (5) ◽  
pp. 1220-1227 ◽  
Author(s):  
L. M. Taussig ◽  
L. I. Landau ◽  
S. Godfrey ◽  
I. Arad

Maximal flows at functional residual capacity (VmaxFRC) from partial expiratory flow-volume (PEFV) curves (achieved with rapid compression of the chest) were obtained on 11 healthy newborn babies. Mean VmaxFRC, size corrected by dividing absolute values by measured thoracic gas volume, was 1.90 TGV's/s. Specific upstream conductances were high, and the cross-sectional area of the flow-limiting segment was estimated to be approximately 0.30 cm2 in the three infants on whom recoil pressures at FRC were also measured. The cross-sectional area of the major bronchi in the neonate is approximately 0.26–0.30 cm2. PEFV curves were convex to the volume axis. Many of the neonates increased their flows while breathing a helium-oxygen gas mixture. These results suggest 1) size-corrected flows are higher in the neonate than in older children or adults; 2) the site of the flow-limiting segment at FRC during maximal expiratory maneuvers is in large proximal airways, similar to the adult; and 3) the relationship of airway size to parenchymal size may be similar in neonates and adults or, in fact, airways may be larger, relative to parenchyma, in neonates. These physiological data do not support the hypothesis, based on pathological studies, that peripheral airways are disproportionately smaller (when compared with central airways) in infants than in adults.


1998 ◽  
Vol 84 (4) ◽  
pp. 1475-1479 ◽  
Author(s):  
Megan A. McCrory ◽  
Paul A. Molé ◽  
Terri D. Gomez ◽  
Kathryn G. Dewey ◽  
Edmund M. Bernauer

The BOD POD, a new air-displacement plethysmograph for measuring human body composition, utilizes the inverse relationship between pressure and volume (Boyle’s law) to measure body volume directly. The quantity of air in the lungs during tidal breathing, the average thoracic gas volume (Vtg), is also measured by the BOD POD by using a standard plethysmographic technique. Alternatively, the BOD POD provides the use of a predicted Vtg (Vtgpred). The validity of using Vtgpred in place of measured Vtg (Vtgmeas) to determine the percentage of body fat (%BF) was evaluated in 50 subjects (36 women, 14 men; ages 18–56 yr). There was no significant difference between Vtgmeas and Vtgpred (mean difference ± SE, 53.5 ± 63.3 ml) nor in %BF by using Vtgmeas vs. Vtgpred (0.2 ± 0.2 %BF). On an individual basis, %BF measured by using Vtgmeas vs. Vtgpred differed within ±2.0% BF for 82% of the subjects; maximum differences were −2.9 to +3.0% BF. For comparison, data from 24 subjects who had undergone hydrostatic weighing were evaluated for the validity of using predicted vs. measured residual lung volume (Vr pred vs. Vr meas, respectively). Differences between Vr meas and Vr pred and in %BF calculated by using Vr meas vs. Vr pred were significant (187 ± 46 ml and 1.4 ± 0.3% BF, respectively; P < 0.001). On an individual basis, %BF determined by using Vr meas vs. Vr preddiffered within ±2.0% BF for 46% of the subjects; maximum differences were −2.9 to +3.8% BF. With respect to %BF measured by air displacement, our findings support the use of Vtgpred for group mean comparisons and for purposes such as screening in young to middle-aged individuals. This contrasts with the use of Vr pred in hydrostatic weighing, which leads to significant errors in the estimation of %BF. Furthermore, although the use of Vtgpred has some application, determining Vtgmeas is relatively simple in most cases. Therefore, we recommend that the use of Vtgmeas remain as standard experimental and clinical practice.


1984 ◽  
Vol 57 (6) ◽  
pp. 1917-1922 ◽  
Author(s):  
W. S. Krell ◽  
K. P. Agrawal ◽  
R. E. Hyatt

Specific airway conductance (sGaw) was measured during quiet breathing and during panting in 21 normal subjects and 10 patients with obstructive lung disease. The direct method used does not require measuring thoracic gas volume (TGV). Coefficients of variation were 5.5% for panting and 5.1% for quiet breathing. Interobserver variability was 4.7% in the quiet-breathing method and 6.3% in the panting method. The two methods gave equivalent results for sGaw. A slightly greater sGaw was found by the panting method in normal subjects with the highest sGaw values, probably due to widening of the oropharynx-glottis during panting. In six normal subjects studied for intrasubject variability over time, no significant diurnal or day-to-day variability was seen by either method. We conclude that the quiet-breathing method is a simple valid means of determining sGaw and utilizes a physiological respiratory maneuver. Obviation of the need to measure TGV is advantageous. Results are equivalent to those of the panting method and variability is similar.


Sign in / Sign up

Export Citation Format

Share Document