Concurrent measurements of functional residual capacity by three methods

1962 ◽  
Vol 17 (6) ◽  
pp. 871-873 ◽  
Author(s):  
Donald F. Tierney ◽  
Jay A. Nadel

We made concurrent measurements of the functional residual capacity (FRC) with the body plethysmograph (thoracic gas volume) and by 7-min and prolonged open-circuit nitrogen dilution methods (communicating gas volume). The mean difference between the 7-min communicating gas volume and the thoracic gas volume in 13 healthy subjects was only 0.13 liters. The thoracic gas volume averaged 0.99 liters larger than the communicating gas volume after 7 min of O2 breathing in 13 patients with emphysema. The communicating gas volume at 12–18 min was the same as the thoracic gas volume in 11 of 13 patients but was smaller in the other 2. When the thoracic gas volume was used to measure FRC, the total lung capacity averaged 142% of predicted normal in 13 patients with emphysema. Submitted on January 4, 1962

1991 ◽  
Vol 70 (6) ◽  
pp. 2611-2618 ◽  
Author(s):  
T. Mutoh ◽  
W. J. Lamm ◽  
L. J. Embree ◽  
J. Hildebrandt ◽  
R. K. Albert

Abdominal distension (AD) occurs in pregnancy and is also commonly seen in patients with ascites from various causes. Because the abdomen forms part of the "chest wall," the purpose of this study was to clarify the effects of AD on ventilatory mechanics. Airway pressure, four (vertical) regional pleural pressures, and abdominal pressure were measured in five anesthetized, paralyzed, and ventilated upright pigs. The effects of AD on the lung and chest wall were studied by inflating a liquid-filled balloon placed in the abdominal cavity. Respiratory system, chest wall, and lung pressure-volume (PV) relationships were measured on deflation from total lung capacity to residual volume, as well as in the tidal breathing range, before and 15 min after abdominal pressure was raised. Increasing abdominal pressure from 3 to 15 cmH2O decreased total lung capacity and functional residual capacity by approximately 40% and shifted the respiratory system and chest wall PV curves downward and to the right. Much smaller downward shifts in lung deflation curves were seen, with no change in the transdiaphragmatic PV relationship. All regional pleural pressures increased (became less negative) and, in the dependent region, approached 0 cmH2O at functional residual capacity. Tidal compliances of the respiratory system, chest wall, and lung were decreased 43, 42, and 48%, respectively. AD markedly alters respiratory system mechanics primarily by "stiffening" the diaphragm/abdomen part of the chest wall and secondarily by restricting lung expansion, thus shifting the lung PV curve as seen after chest strapping. The less negative pleural pressures in the dependent lung regions suggest that nonuniformities of ventilation could also be accentuated and gas exchange impaired by AD.


2008 ◽  
Vol 105 (6) ◽  
pp. 1864-1872 ◽  
Author(s):  
Z. Hantos ◽  
Á. Adamicza ◽  
T. Z. Jánosi ◽  
M. V. Szabari ◽  
J. Tolnai ◽  
...  

Absolute lung volumes such as functional residual capacity, residual volume (RV), and total lung capacity (TLC) are used to characterize emphysema in patients, whereas in animal models of emphysema, the mechanical parameters are invariably obtained as a function of transrespiratory pressure (Prs). The aim of the present study was to establish a link between the mechanical parameters including tissue elastance (H) and airway resistance (Raw), and thoracic gas volume (TGV) in addition to Prs in a mouse model of emphysema. Using low-frequency forced oscillations during slow deep inflation, we tracked H and Raw as functions of TGV and Prs in normal mice and mice treated with porcine pancreatic elastase. The presence of emphysema was confirmed by morphometric analysis of histological slices. The treatment resulted in an increase in TGV by 51 and 44% and a decrease in H by 57 and 27%, respectively, at 0 and 20 cmH2O of Prs. The Raw did not differ between the groups at any value of Prs, but it was significantly higher in the treated mice at comparable TGV values. In further groups of mice, tracheal sounds were recorded during inflations from RV to TLC. All lung volumes but RV were significantly elevated in the treated mice, whereas the numbers and size distributions of inspiratory crackles were not different, suggesting that the airways were not affected by the elastase treatment. These findings emphasize the importance of absolute lung volumes and indicate that tissue destruction was not associated with airway dysfunction in this mouse model of emphysema.


2017 ◽  
Vol 123 (4) ◽  
pp. 876-883 ◽  
Author(s):  
Robert H. Brown ◽  
Robert J. Henderson ◽  
Elizabeth A. Sugar ◽  
Janet T. Holbrook ◽  
Robert A. Wise

Brown RH, Henderson RJ, Sugar EA, Holbrook JT, Wise RA, on behalf of the American Lung Association Airways Clinical Research Centers. Reproducibility of airway luminal size in asthma measured by HRCT. J Appl Physiol 123: 876–883, 2017. First published July 13, 2017; doi:10.1152/japplphysiol.00307.2017.—High-resolution CT (HRCT) is a well-established imaging technology used to measure lung and airway morphology in vivo. However, there is a surprising lack of studies examining HRCT reproducibility. The CPAP Trial was a multicenter, randomized, three-parallel-arm, sham-controlled 12-wk clinical trial to assess the use of a nocturnal continuous positive airway pressure (CPAP) device on airway reactivity to methacholine. The lack of a treatment effect of CPAP on clinical or HRCT measures provided an opportunity for the current analysis. We assessed the reproducibility of HRCT imaging over 12 wk. Intraclass correlation coefficients (ICCs) were calculated for individual airway segments, individual lung lobes, both lungs, and air trapping. The ICC [95% confidence interval (CI)] for airway luminal size at total lung capacity ranged from 0.95 (0.91, 0.97) to 0.47 (0.27, 0.69). The ICC (95% CI) for airway luminal size at functional residual capacity ranged from 0.91 (0.85, 0.95) to 0.32 (0.11, 0.65). The ICC measurements for airway distensibility index and wall thickness were lower, ranging from poor (0.08) to moderate (0.63) agreement. The ICC for air trapping at functional residual capacity was 0.89 (0.81, 0.94) and varied only modestly by lobe from 0.76 (0.61, 0.87) to 0.95 (0.92, 0.97). In stable well-controlled asthmatic subjects, it is possible to reproducibly image unstimulated airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability. NEW & NOTEWORTHY There is a surprising lack of studies examining the reproducibility of high-resolution CT in asthma. The current study examined reproducibility of airway measurements. In stable well-controlled asthmatic subjects, it is possible to reproducibly image airway luminal areas over time, by region, and by size at total lung capacity throughout the lungs. Therefore, any changes in luminal size on repeat CT imaging are more likely due to changes in disease state and less likely due to normal variability.


1997 ◽  
Vol 83 (4) ◽  
pp. 1068-1075 ◽  
Author(s):  
Aladin M. Boriek ◽  
Joseph R. Rodarte ◽  
Theodore A. Wilson

Boriek, Aladin M., Joseph R. Rodarte, and Theodore A. Wilson. Kinematics and mechanics of midcostal diaphragm of dog. J. Appl. Physiol. 83(4): 1068–1075, 1997.—Radiopaque markers were attached to the peritoneal surface of three neighboring muscle bundles in the midcostal diaphragm of four dogs, and the locations of the markers were tracked by biplanar video fluoroscopy during quiet spontaneous breathing and during inspiratory efforts against an occluded airway at three lung volumes from functional residual capacity to total lung capacity in both the prone and supine postures. Length and curvature of the muscle bundles were determined from the data on marker location. Muscle lengths for the inspiratory states, as a fraction of length at functional residual capacity, ranged from 0.89 ± 0.04 at end inspiration during spontaneous breathing down to 0.68 ± 0.07 during inspiratory efforts at total lung capacity. The muscle bundles were found to have the shape of circular arcs, with the three bundles forming a section of a right circular cylinder. With increasing lung volume and diaphragm displacement, the circular arcs rotate around the line of insertion on the chest wall, the arcs shorten, but the radius of curvature remains nearly constant. Maximal transdiaphragmatic pressure was calculated from muscle curvature and maximal tension-length data from the literature. The calculated maximal transdiaphragmatic pressure-length curve agrees well with the data of Road et al. ( J. Appl. Physiol. 60: 63–67, 1986).


1982 ◽  
Vol 52 (4) ◽  
pp. 995-999 ◽  
Author(s):  
C. S. Beardsmore ◽  
J. Stocks ◽  
M. Silverman

Thoracic gas volume (TGV) was measured with a whole-body plethysmograph in 20 infants at functional residual capacity (FRC) and at a series of higher lung volumes achieved by artificial inflation of the lungs with known volumes of air after airway occlusion. There was a discrepancy between the corrected values of TGV measured at high and low lung volumes in nine infants; in six cases TGV measured at high lung volumes exceeded that measured at FRC, and in three cases it was reduced when compared with the measurement made at FRC. These changes were not related to age, size, or clinical status and could be explained by airway closure at FRC, combined with an uneven distribution of pleural pressure.


1979 ◽  
Vol 46 (1) ◽  
pp. 67-73 ◽  
Author(s):  
C. R. Inners ◽  
P. B. Terry ◽  
R. J. Traystman ◽  
H. A. Menkes

The effects of changing lung volume (VL) on collateral resistance (Rcoll) and total airways resistance (Raw) were compared in six young volunteers. At functional residual capacity (FRC) = 55% total lung capacity (TLC), mean Rcoll was 4,664 +/- 1,518 (SE) cmH2O/(l/s) and mean Raw was 1.57 +/- 0.11 (SE) cmH2O/l/s). When VL increased to 80% TLC, Rcoll decreased by 63.3 +/- 7.8%, and Raw decreased by 50.3 +/- 4.2 (SE) %. The decrease in Rcoll with increasing lung volume was not statistically different from that of Raw (P less than 0.05). If the airways obstructed for measurements of Rcoll served between 2 and 5% of the lungs, then Rcoll was approximately 50 times as great as the resistance to flow through airways serving the same volume of lung at FRC. The relationship did not change significantly when VL increased by 25% TLC. If changes in Raw reflect changes in airways supplying sublobar portions of lung, these results indicate that there is no tendency for the redistribution of ventilation through airways and collateral pathways with changes in VL in young subjects.


1978 ◽  
Vol 44 (3) ◽  
pp. 469-473 ◽  
Author(s):  
R. Brown ◽  
F. G. Hoppin ◽  
R. H. Ingram ◽  
N. A. Saunders ◽  
E. R. McFadden

In a body plethysmograph we have demonstrated differences in total lung capacity (TLC) derived from panting maneuvers performed at different levels in the vital capacity. In almost all cases, the discrepancies were due to the magnitude of the abdominal gas volume (AGV) and the relative magnitude of abdominal and thoracic pressure swings during the panting mandeuver. When panting was performed at functional residual capacity (FRC), the effect of AGV compression on the determination of thoracid gas volume (TGV) was small. Of 11 individuals studied 2 were known to have mild asthma. Compression and decompression of AGV appeared to be an insufficient explanation for discrepancies in derived TLC's in these two, suggesting that other as yet unidentified factors may influence the plethysmographic determination of TGV.


1998 ◽  
Vol 85 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Jennifer Beck ◽  
Christer Sinderby ◽  
Lars Lindström ◽  
Alex Grassino

The purpose of this study was to evaluate the influence of velocity of shortening on the relationship between diaphragm activation and pressure generation in humans. This was achieved by relating the root mean square (RMS) of the diaphragm electromyogram to the transdiaphragmatic pressure (Pdi) generated during dynamic contractions at different inspiratory flow rates. Five healthy subjects inspired from functional residual capacity to total lung capacity at different flow rates while reproducing identical Pdi and chest wall configuration profiles. To change the inspiratory flow rate, subjects performed the inspirations while breathing across two different inspiratory resistances (10 and 100 cmH2O ⋅ l−1 ⋅ s), at mouth pressure targets of −10, −20, −40, and −60 cmH2O. The diaphragm electromyogram was recorded and analyzed with control of signal contamination and electrode positioning. RMS values obtained for inspirations with identical Pdi and chest wall configuration profiles were compared at the same percentage of inspiratory duration. At inspiratory flows ranging between 0.1 and 1.4 l/s, there was no difference in the RMS for the inspirations from functional residual capacity to total lung capacity when Pdi and chest wall configuration profiles were reproduced ( n = 4). At higher inspiratory flow rates, subjects were not able to reproduce their chest wall displacements and adopted different recruitment patterns. In conclusion, there was no evidence for increased demand of diaphragm activation when healthy subjects breathe with similar chest wall configuration and Pdi profiles, at increasing flow rates up to 1.4 l/s.


1989 ◽  
Vol 67 (2) ◽  
pp. 707-712 ◽  
Author(s):  
S. S. Margulies ◽  
J. R. Rodarte ◽  
E. A. Hoffman

Five anesthetized supine beagle dogs were scanned using a fast, multislice computed tomographic X-ray technique to determine the orientation of the ribs at total lung capacity (TLC) and functional residual capacity (FRC). A plane was fit to each rib using a coordinate system in which the z-axis was aligned approximately cephalocaudally and the x-z-plane coincided with the sagittal midplane. The orientation of each plane was described by “pump-handle” and “bucket-handle” angles. The ribs rotated downward and inward during a passive deflation of the lungs from TLC to FRC. Rib displacement was not uniform: bucket-handle motion was predominant in the upper ribs, and pump- and bucket-handle motions were equal in the lower ribs. The change in the pump-handle angles between TLC and FRC was approximately 6 degrees for ribs 3–8, and the change in the bucket-handle angles decreased with rib number from 16 degrees for rib 3 to 6 degrees for rib 8. Rib shape was described by fitting an ellipse to the data for each rib; the ribs became larger and more circular with increasing rib number.


Sign in / Sign up

Export Citation Format

Share Document