Developmental pattern of muscle fiber types in human ventilatory muscles

1978 ◽  
Vol 44 (6) ◽  
pp. 909-913 ◽  
Author(s):  
T. G. Keens ◽  
A. C. Bryan ◽  
H. Levison ◽  
C. D. Ianuzzo

Premature infants tolerate respiratory loads poorly. This may reflect incomplete development of the ventilatory muscles (VM) causing poor resistance to fatigue. To study the developmental pattern of human VM, 31 postmortem specimens of diaphragm and intercostal muscles were obtained. Individual muscle fibers were classified as type I (slow-twitch, high-oxidative) or type II (fast-twich, low-oxidative) using histochemical staining methods for myofibrillar adenosine triphosphatase (M-ATPase) (pH 10.30) and nicotinamide adenine dinucleotide (NADH) tetrazolium reductase. In the diaphragm, premature infants (less than 37 wk gestation) had only 9.7 +/- 1.3% type I fibers, full-term newborns 25.0 +/- 1.1%, and older subjects (greater than 2 yr of age) 54.9 +/- 1.3%. There was no further increase after 8 mo postpartum. In the intercostal muscles, premature infants had only 19.0 +/- 4.8% type I fibers, full-term newborns 45.7 +/- 1.3%, and older subjects 65.2 +/- 2.6%. There was no further increase after 2 mo postpartum. These findings suggest the ventilatory muscles of newborn infants are more susceptible to fatigue than those of older subjects. This may contribute significantly to respiratory problems in the neonate.

1991 ◽  
Vol 71 (2) ◽  
pp. 558-564 ◽  
Author(s):  
P. F. Gardiner ◽  
B. J. Jasmin ◽  
P. Corriveau

Our aim was to quantify the overload-induced hypertrophy and conversion of fiber types (type II to I) occurring in the medial head of the gastrocnemius muscle (MG). Overload of MG was induced by a bilateral tenotomy/retraction of synergists, followed by 12–18 wk of regular treadmill locomotion (2 h of walking/running per day on 3 of 4 days). We counted all type I fibers and determined type I and II mean fiber areas in eight equidistant sections taken along the length of control and overloaded MG. Increase in muscle weights (31%), as well as in total muscle cross-sectional areas (37%) and fiber areas (type I, 57%; type II, 34%), attested to a significant hypertrophic response in overloaded MG. An increase in type I fiber composition of MG from 7.0 to 11.5% occurred as a result of overload, with the greatest and only statistically significant changes (approximately 70–100%) being found in sections taken from the most rostral 45% of the muscle length. Results of analysis of sections taken from the largest muscle girth showed that it significantly underestimated the extent of fiber conversion that occurred throughout the muscle as a whole. These data obtained on the MG, which possesses a compartmentalization of fiber types, support the notion that all fiber types respond to this model with a similar degree of hypertrophy. Also, they emphasize the complex nature of the adaptive changes that occur in these types of muscles as a result of overload.


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


2003 ◽  
Vol 284 (3) ◽  
pp. E541-E548 ◽  
Author(s):  
Hilary Ann Petersen ◽  
Patrick T. Fueger ◽  
Deanna P. Bracy ◽  
David H. Wasserman ◽  
Amy E. Halseth

The aim of this study was to determine barriers limiting muscle glucose uptake (MGU) during increased glucose flux created by raising blood glucose in the presence of fixed insulin. The determinants of the maximal velocity ( V max) of MGU in muscles of different fiber types were defined. Conscious rats were studied during a 4 mU · kg−1 · min−1insulin clamp with plasma glucose at 2.5, 5.5, and 8.5 mM. [U-14C]mannitol and 3- O-methyl-[3H]glucose ([3H]MG) were infused to steady-state levels ( t = −180 to 0 min). These isotope infusions were continued from 0 to 40 min with the addition of a 2-deoxy-[3H]glucose ([3H]DG) infusion. Muscles were excised at t = 40 min. Glucose metabolic index (Rg) was calculated from muscle-phosphorylated [3H]DG. [U-14C]mannitol was used to determine extracellular (EC) H2O. Glucose at the outer ([G]om) and inner ([G]im) sarcolemmal surfaces was determined by the ratio of [3H]MG in intracellular to EC H2O and muscle glucose. Rg was comparable at the two higher glucose concentrations, suggesting that rates of uptake near V max were reached. In summary, by defining the relationship of arterial glucose to [G]om and [G]im in the presence of fixed hyperinsulinemia, it is concluded that 1) V max for MGU is limited by extracellular and intracellular barriers in type I fibers, as the sarcolemma is freely permeable to glucose; 2) V max is limited in muscles with predominantly type IIb fibers by extracellular resistance and transport resistance; and 3) limits to Rg are determined by resistance at multiple steps and are better defined by distributed control rather than by a single rate-limiting step.


1996 ◽  
Vol 270 (1) ◽  
pp. H115-H120 ◽  
Author(s):  
H. N. Sabbah ◽  
H. Shimoyama ◽  
V. G. Sharov ◽  
T. Kono ◽  
R. C. Gupta ◽  
...  

The proportion of slow-twitch, fatigue-resistant type 1 skeletal muscle (SM) fibers is often reduced in heart failure (HF), while the proportion of fatigue-sensitive type-II fibers increases. This maladaptation may be partially responsible for the exercise intolerance that characterize HF. In this study, we examined the effects of early monotherapy with the angiotensin-converting enzyme inhibor, enalapril, and the beta-blocker, metoprolol, on SM fiber type composition in 18 dogs with moderate HF produced by intracoronary microembolizations. HF dogs were randomized to 3 mo therapy with enalapril (10 mg twice daily), metoprolol (25 mg twice daily), or no treatment. Triceps muscle biopsies were obtained at baseline, before randomization, and at the end of 30 mo of therapy. Type I and type II SM fibers were differentiated by myofibrillar adenosinetriphosphatase (pH 9.4). In untreated dogs, the proportion of type I fibers was 27 +/- 1% before randomization and decreased to 23 +/- 1% (P < 0.05) at the end of 3 mo of follow up. In dogs treated with enalapril or metoprolol, the proportion of type I fibers was 30 +/- 4 and 28 +/- 2% before randomization and 33 +/- 4 and 33 +/- 1%, respectively, after 3 mo of therapy. In conclusion, in dogs with moderate HF, early therapy with enalapril or metoprolol prevents the progressive decline in the proportion of type I SM fibers.


2000 ◽  
Vol 88 (2) ◽  
pp. 473-478 ◽  
Author(s):  
Varvara P. Grichko ◽  
Anne Heywood-Cooksey ◽  
Kameha R. Kidd ◽  
Robert H. Fitts

Limb muscles from rats flown in space and after hindlimb unloading (HU) show an increased fatigability, and spaceflight has been shown to result in a reduced ability to oxidize fatty acids. The purpose of this investigation was to determine the effects of HU on the substrate content in fast- and slow-twitch fibers and to assess the substrate utilization patterns in single slow type I fibers isolated from control and HU animals. A second objective was to assess whether HU altered the ability of the heart or limb muscle to oxidize pyruvate or palmitate. After 2 wk of HU, single fibers were isolated from the freeze-dried soleus and gastrocnemius muscles. HU increased the glycogen content in all fiber types, and it increased lactate, ATP, and phosphocreatine in the slow type I fiber. After HU, the type I fiber substrate profile was shifted toward that observed in fast fibers. For example, fiber glycogen increased from 179 ± 16 to 285 ± 25 mmol/kg dry wt, which approached the 308 ± 23 mmol/kg dry wt content observed in the post-HU type IIa fiber. With contractile activity, the type I fiber from the HU animal showed a greater utilization of glycogen and accumulation of lactate compared with the control type I fiber. HU had no effect on the ability of crude homogenate or mitochondria fractions from the soleus or gastrocnemius to oxidize pyruvate or palmitate. The increased fatigability after HU may have resulted from an elevated glycolysis producing an increased cell lactate and a decreased pH.


1975 ◽  
Vol 23 (11) ◽  
pp. 808-827 ◽  
Author(s):  
M M Jaweed ◽  
G J Herbison ◽  
J F Ditunno

A histochemical study, using myosin-adenosine triphosphatase activity at pH 9.4, was conducted in soleus and plantaris muscles of adult rats, after bilateral crushing of the sciatic nerve at the sciatic notch. The changes in fiber diameter and per cent composition of type I and type II fibers plus muscle weights were evaluated along the course of denervation-reinnervation curve at 1, 2, 3, 4 and 6 weeks postnerve crush. The study revealed that in the early denervation phase (up to 2 weeks postcrush) both the slow and fast muscles, soleus and plantaris, resepctively, atrophied similarly in muscle mass. Soleus increased in the number of type II fibers, which may be attributed to "disuse" effect. During the same period, the type I fibers of soleus atrophied as much or slightly more than the type II fibers; whereas the type II fibers of plantaris atrophied significantly more than the type I fibers, reflecting that the process of denervation, in its early stages, may affect the two fiber types differentially in the slow and fast muscles. It was deduced that the type I fibers of plantaris may be essentially different in the slow (soleus) and fast (plantaris) muscles under study. The onset of reinnervation, as determined by the increase in muscle weight and fiber diameter of the major fiber type, occurred in soleus and plantaris at 2 and 3 weeks postcrush, respectively, which confirms the earlier hypotheses that the slow muscles are reinnervated sooner than the fast muscles. It is suggested that the reinnervation of muscle after crush injury may be specific to the muscle type or its predominant fiber type.


1986 ◽  
Vol 34 (4) ◽  
pp. 513-516 ◽  
Author(s):  
S Jeffery ◽  
N D Carter ◽  
A Smith

Specific antisera were raised against the three carbonic anhydrase (CA) isozymes, CAI, CAII, and CAIII, and were used to determine the fiber distribution of these isozymes in skeletal muscle. Fiber types were determined by ATPase staining, and the CA isozymes were detected using a peroxidase-anti-peroxidase (PAP) technique. All three isozymes were present in type I fibers; CAII and CAIII were exclusive to these fibers, and CAI were also present in some small type 2A fibers.


1981 ◽  
Vol 18 (3) ◽  
pp. 279-298 ◽  
Author(s):  
T. J. Hulland

Skeletal muscle of sheep was examined histochemically in an attempt to define muscle fiber populations capable of distinctive biological behavior. ATPase at alkaline and acid pH, NADH-TR, and succinic dehydrogenase showed at least 12 fiber types, but only three often enough to be considered biologically important muscle fiber populations. The proportions of the three major types altered during early life, but not perceptibly during adult life. Proportions of Type I and Type II fibers were different, sometimes significantly, from breed to breed. Histochemical techniques and morphometric analyses of fiber cross-sectional area were used to study muscle fiber changes in moderate to marked cachectic atrophy. Progressive reduction of gross muscle volume was attended by complex interrelationships between the two major muscle fiber types, including alternate episodes of atrophy and hypertrophy, resulting in marked inequality of mean fiber size between the fiber types. The patterns appeared to be different but characteristic for each muscle. The usual pattern of cachectic atrophy shows atrophy resistance of Type I fibers, but here a Type II-dominant atrophy also was seen. It is concluded that the large muscle fibers often seen in advanced cachectic atrophy are those Type I fibers that are more labile in both atrophy and hypertrophy than most.


1988 ◽  
Vol 65 (3) ◽  
pp. 1040-1044 ◽  
Author(s):  
P. N. Le Souef ◽  
S. J. England ◽  
H. A. Stogryn ◽  
A. C. Bryan

The ability to maintain occlusion pressure (i.e., fatigability) during activation of the diaphragm via phrenic nerve stimulation was compared in newborn (less than 14 days old) and older (greater than 30 days old) rabbits. The younger animals had lower maximum inspiratory pressures (MIP) and markedly greater falls in pressure during sustained diaphragmatic contractions at greater than 40% MIP than did the older animals. Histological analysis showed a paucity of high-oxidative type I fibers in the diaphragms of the young animals. We therefore conclude that the newborn rabbit diaphragm is extremely susceptible to fatigue and that this susceptibility correlates with the distribution of muscle fiber types.


Sign in / Sign up

Export Citation Format

Share Document