Postinspiratory mixing in the lung and cardiogenic oscillations

1981 ◽  
Vol 51 (4) ◽  
pp. 922-928 ◽  
Author(s):  
R. Arieli ◽  
A. J. Olszowka ◽  
H. D. Van Liew

Subjects inspired a 300-ml bolus of indicator gas cocktail (5% each of SF6, Ar, Ne, and He) form residual volume (RV), then inspired air to functional residual capacity (FRC). There was no evidence that a 10-s breath hold changed the relative concentrations or amounts of indicator gases in phases III and IV of expiration or allowed additional gas to mix into the RV, but the breath hold caused cardiogenic oscillations (CO) in expired gas to decrease in height. The units responsible for cardiogenic troughs and peaks are different from the units responsible for phases III and IV, respectively, in that the oscillation troughs had a lower He/SF6 ratio than the peaks whereas phase III had a higher He/SF6 than phase IV. We explain the CO as due to variation in mechanical properties, leading to variation in response to the pressure wave caused by the heart, in units that are relatively near to each other. We conclude that there is little or no postinspiratory mixing between distant lung units, but the dampening of CO suggests that units that are close to each other can mix if time is allowed.

1979 ◽  
Vol 46 (1) ◽  
pp. 24-30 ◽  
Author(s):  
L. Forkert ◽  
S. Dhingra ◽  
N. R. Anthonisen

Using boluses of radioactive Xe we compared regional N2O uptake with regional perfusion distribution during open glottis breath hold in five seated men. Measurements were made near residual volume, at closing volume (CV), above CV and when possible, between CV and residual volume (RV). At low lung volumes basal N2O uptake was small whereas basal blood flow was not. This discrepancy was interpreted as evidence of airway closure and was quantitated. All subjects showed extensive basal closure near RV. At closing volume four of five subjects demonstrated closure and some closure was evident in these subjects at volumes in excess of CV. The increase in airway closure with decreasing lung volume was much greater below CV than above it. Conventional CV tracings were obtained using helium boluses; the height of phase IV was positively correlated with the change in airway closure between CV and RV as assessed by the N2O technique. The slope of phase III did not correlate with the amount of airway closure measured at CV. We concluded that the conventionally measured CV is not the volume at which airway closure begins but that the onset of phase IV reflects an increase in basal airway closure and the height of phase IV reflects the amount of basal closure between CV and RV.


1998 ◽  
Vol 85 (4) ◽  
pp. 1252-1259 ◽  
Author(s):  
Chantal Darquenne ◽  
John B. West ◽  
G. Kim Prisk

We performed bolus inhalations of 1-μm particles in four subjects on the ground (1 G) and during parabolic flights both in microgravity (μG) and in ∼1.6 G. Boluses of ∼70 ml were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 200 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The deposition, dispersion, and position of the bolus in the expired gas were calculated from these data. For Vp ≥400 ml, both deposition and dispersion increased with Vp and were strongly gravity dependent, with the greatest deposition and dispersion occurring for the largest G level. At Vp = 800 ml, deposition and dispersion increased from 33.9% and 319 ml in μG to 56.9% and 573 ml at ∼1.6 G, respectively ( P < 0.05). At each G level, the bolus was expired at a smaller volume than Vp, and this volume became smaller with increasing Vp. Although dispersion was lower in μG than in 1 G and ∼1.6 G, it still increased steadily with increasing Vp, showing that nongravitational ventilatory inhomogeneity is partly responsible for dispersion in the human lung.


1999 ◽  
Vol 86 (4) ◽  
pp. 1402-1409 ◽  
Author(s):  
Chantal Darquenne ◽  
John B. West ◽  
G. Kim Prisk

We used aerosol boluses to study convective gas mixing in the lung of four healthy subjects on the ground (1 G) and during short periods of microgravity (μG) and hypergravity (∼1.6 G). Boluses of 0.5-, 1-, and 2-μm-diameter particles were inhaled at different points in an inspiration from residual volume to 1 liter above functional residual capacity. The volume of air inhaled after the bolus [the penetration volume (Vp)] ranged from 150 to 1,500 ml. Aerosol concentration and flow rate were continuously measured at the mouth. The dispersion, deposition, and position of the bolus in the expired gas were calculated from these data. For each particle size, both bolus dispersion and deposition increased with Vp and were gravity dependent, with the largest dispersion and deposition occurring for the largest G level. Whereas intrinsic particle motions (diffusion, sedimentation, inertia) did not influence dispersion at shallow depths, we found that sedimentation significantly affected dispersion in the distal part of the lung (Vp >500 ml). For 0.5-μm-diameter particles for which sedimentation velocity is low, the differences between dispersion in μG and 1 G likely reflect the differences in gravitational convective inhomogeneity of ventilation between μG and 1 G.


1978 ◽  
Vol 45 (4) ◽  
pp. 528-535 ◽  
Author(s):  
K. Rehder ◽  
T. J. Knopp ◽  
A. D. Sessler

The intrapulmonary distribution of inspired gas (ventilation/unit lung volume, VI), functional residual capacity (FRC), closing capacity (CC), and the slope of phase III were determined in five awake and five anesthetized-paralyzed volunteers who were in the prone position with the abdomen unsupported. After induction of anesthesia-paralysis, FRC was less in four of five subjects and CC was consistently less. At FRC there was no difference in the vertical gradient of regional lung volumes between the awake and anesthetized-paralyzed prone subjects. Also, there was no difference in VI between the two states. The normalized slope of phase III decreased consistently with induction of anesthesia-paralysis, but the vertical distribution of a 133Xe bolus inhaled from residual volume was not different between the two states. The data of the study are compatible with 1) a pattern of expansion of the respiratory system during anesthesia-paralysis and mechanical ventilation different than that during spontaneous breathing and 2) a more uniform intraregional distribution of inspired gas and/or a different sequence of emptying during anesthesia-paralysis.


1964 ◽  
Vol 19 (2) ◽  
pp. 204-206 ◽  
Author(s):  
Leonard I. Kleinman ◽  
Dennis A. Poulos ◽  
Arthur A. Siebens

The “minimal air” of supine dogs was measured by subtracting from the functional residual capacity the volume expelled from the lungs when the sternum was widely split. Minimal air/functional residual capacity, minimal air/lung weight, and minimal air/animal weight were 57.0 ± 8.6%, 9.51 ± 2.92 ml/g, 21.8 ± 4.2 ml/kg, respectively. The correlation coefficient of minimal air with functional residual capacity was .79 (P < 1%), of minimal air with animal weight was 0.70 (P < 1%), and of minimal air with lung weight was .67 (P < 5%). The ratio minimal air/functional residual capacity of these dogs compared with the ratio residual volume/functional residual capacity of supine men. The airway component of the minimal air was approximately 36% and the alveolar component approximately 64%. The lungs contained the minimal air at a time when airways were patent rather than collapsed. functional residual capacity; residual volume Submitted on March 11, 1963


1962 ◽  
Vol 17 (4) ◽  
pp. 683-688 ◽  
Author(s):  
Leslie B. Reynolds

Overinflation or release from deflation of the lungs in anesthetized cats induced a vagally mediated, inspiration-augmenting reflex, characterized by a sudden phrenic motor discharge and an increase in rate and depth of inspiration. It resulted in an increase in end-expiratory volume and lung compliance. In a series of sinusoidal inflations, the reflex could exhibit summation to occur on any single inflation, but having occurred, was temporarily refractory to further inflations. The spontaneous deep breath was shown to be the same reflex, being vagally mediated, and similarly related to changes in mechanical properties of the lungs. The effective stimulus was shown to be a function of velocity and duration of inflation, while the refractoriness shown by the reflex was related to the accompanying increase in end-expiratory volume. The inspiration-augmenting reflex, by increasing functional residual capacity and compliance, was presumed to open alveolar units. It may interact with the Hering-Breuer inspiration-limiting reflex in controlling the respiratory cycle. Submitted on January 8, 1962


1998 ◽  
Vol 84 (2) ◽  
pp. 661-668 ◽  
Author(s):  
Anne-Marie Lauzon ◽  
Ann R. Elliott ◽  
Manuel Paiva ◽  
John B. West ◽  
G. Kim Prisk

Lauzon, Anne-Marie, Ann R. Elliott, Manuel Paiva, John B. West, and G. Kim Prisk. Cardiogenic oscillation phase relationships during single-breath tests performed in microgravity. J. Appl. Physiol. 84(2): 661–668, 1998.—We studied the phase relationships of the cardiogenic oscillations in the phase III portion of single-breath washouts (SBW) in normal gravity (1 G) and in sustained microgravity (μG). The SBW consisted of a vital capacity inspiration of 5% He-1.25% sulfurhexafluoride-balance O2, preceded at residual volume by a 150-ml Ar bolus. Pairs of gas signals, all of which still showed cardiogenic oscillations, were cross-correlated, and their phase difference was expressed as an angle. Phase relationships between inspired gases (e.g., He) and resident gas (N2) showed no change from 1 G (211 ± 9°) to μG (163 ± 7°). Ar bolus and He were unaltered between 1 G (173 ± 15°) and μG (211 ± 25°), showing that airway closure in μG remains in regions of high specific ventilation and suggesting that airway closure results from lung regions reaching low regional volume near residual volume. In contrast, CO2 reversed phase with He between 1 G (332 ± 6°) and μG (263 ± 27°), strongly suggesting that, in μG, areas of high ventilation are associated with high ventilation-perfusion ratio (V˙a/Q˙). This widening of the range ofV˙a/Q˙in μG may explain previous measurements (G. K. Prisk, A. R. Elliott, H. J. B. Guy, J. M. Kosonen, and J. B. West. J. Appl. Physiol. 79: 1290–1298, 1995) of an overall unaltered range ofV˙a/Q˙in μG, despite more homogeneous distributions of both ventilation and perfusion.


1994 ◽  
Vol 76 (4) ◽  
pp. 1719-1729 ◽  
Author(s):  
H. J. Guy ◽  
G. K. Prisk ◽  
A. R. Elliott ◽  
R. A. Deutschman ◽  
J. B. West

Gravity is known to cause inhomogeneity of ventilation. Nongravitational factors are also recognized, but their relative contribution is not understood. We therefore studied ventilatory inhomogeneity during sustained microgravity during the 9-day flight of Spacelab SLS-1. All seven crew members performed single-breath nitrogen washouts. They inspired a vital capacity breath of 100% oxygen with a bolus of argon at the start of inspiration, and the inspiratory and expiratory flow rates were controlled at 0.5 l/s. Control measurements in normal gravity (1 G) were made pre- and postflight in the standing and supine position. Compared with the standing 1-G measurements, there was a marked decrease in ventilatory inhomogeneity during microgravity, as evidenced by the significant reductions in cardiogenic oscillations, slope of phase III, and height of phase IV for nitrogen and argon. However, argon phase IV volume was not reduced, and considerable ventilatory inhomogeneity remained. For example, the heights of the cardiogenic oscillations during microgravity for nitrogen and argon were 44 and 24%, respectively, of their values at 1 G, whereas the slopes of phase III for nitrogen and argon were 78 and 29%, respectively, of those at 1 G. The presence of a phase IV in microgravity is strong evidence that airway closure still occurs in the absence of gravity. The results were qualitatively similar to those found previously during short periods of 0 G in parabolic flight.


1982 ◽  
Vol 53 (2) ◽  
pp. 361-366
Author(s):  
L. Delaunois ◽  
R. Boileau ◽  
J. Diodatti ◽  
J. Gauthier ◽  
R. R. Martin

The regional distribution of a bolus of gas inhaled at residual volume (RV) is attributed to regional airway closure and is responsible for the phase IV of the single-breath washout during the following deflation. As bronchospasm increases the range of airway opening pressures through the lung, the regional distribution of the bolus could change with effects on the shape of the single-breath washout. We investigated the regional distribution of boluses inhaled at RV and their single-breath washouts during methacholine-induced bronchospasm in prone dogs. With increasing total lung resistance (RL) we first observed in five out of eight animals a preferential “redistribution” of the bolus to the upper caudal regions of the lung, which could be partially attributed to the increased lung volume at RV. When maximal RL was attained, the bolus was evenly distributed through all regions of the lung in these animals with disappearance of phase IV and increased slope of phase III, and a final decrease of tracer concentration at low lung volumes was observed. We conclude from these data that increased bronchomotor tone in dogs results in a less homogeneous intraregional distribution of the bolus with increased slope of phase III and in a more even interregional distribution leading to disappearance of phase IV. In severe bronchospasm the downward slope at low lung volume suggests intraregional closed lung units emptying through collateral pathways into still open neighboring units.


1990 ◽  
Vol 68 (1) ◽  
pp. 35-43 ◽  
Author(s):  
M. Decramer ◽  
T. X. Jiang ◽  
M. B. Reid

We attempted to measure diaphragmatic tension by measuring changes in diaphragmatic intramuscular pressure (Pim) in the costal and crural parts of the diaphragm in 10 supine anesthetized dogs with Gaeltec 12 CT minitransducers. During phrenic nerve stimulation or direct stimulation of the costal and crural parts of the diaphragm in an animal with the chest and abdomen open, Pim invariably increased and a linear relationship between Pim and the force exerted on the central tendon was found (r greater than or equal to 0.93). During quiet inspiration Pim in general decreased in the costal part (-3.9 +/- 3.3 cmH2O), whereas it either increased or slightly decreased in the crural part (+3.3 +/- 9.4 cmH2O, P less than 0.05). Similar differences were obtained during loaded and occluded inspiration. After bilateral phrenicotomy Pim invariably decreased during inspiration in both parts (costal -4.3 +/- 6.4 cmH2O, crural -3.1 +/- 0.6 cmH2O). Contrary to the expected changes in tension in the muscle, but in conformity with the pressure applied to the muscle, Pim invariably increased during passive inflation from functional residual capacity to total lung capacity (costal +30 +/- 23 cmH2O, crural +18 +/- 18 cmH2O). Similarly, during passive deflation from functional residual capacity to residual volume, Pim invariably decreased (costal -12 +/- 19 cmH2O, crural -12 +/- 14 cmH2O). In two experiments similar observations were made with saline-filled catheters. We conclude that although Pim increases during contraction as in other muscles, Pim during respiratory maneuvers is primarily determined by the pleural and abdominal pressures applied to the muscle rather than by the tension developed by it.


Sign in / Sign up

Export Citation Format

Share Document