Deposition of aerosol particles and flow resistance in mathematical and experimental airway models

1983 ◽  
Vol 55 (1) ◽  
pp. 154-163 ◽  
Author(s):  
C. S. Kim ◽  
L. K. Brown ◽  
G. G. Lewars ◽  
M. A. Sackner

Aerosol deposition and flow resistance in obstructed airways were determined from five mathematical and experimental airway models. The first three models were theoretical and based upon Weibel's symmetrical lung model with 1) uniform reduction of airway diameter in various groups of airway generations; 2) obstruction of a few major airways such that a severe uneven flow distribution occurs in the lung; 3) focal constriction of selected large airways. In model 3, an empirical formula was utilized to assess deposition and resistance in the constricted airways. The remaining two models were tested experimentally; 4) oscillation of a compliant wall in a straight tube and 5) two-phase gas-liquid flow utilizing human sputum in a rigid branching tube. In models 1, 2, and 3, airway resistance increased to a greater extent than did the increase of aerosol deposition except when small airways were obstructed in model 1. Here, the increase of aerosol deposition was slightly higher than the rise in airway resistance. A sharp increase of aerosol deposition with a minimal increase of flow resistance was demonstrated in models 4 and 5. These data indicate that aerosol deposition may be a more sensitive indicator of airway abnormalities than overall airway resistance in small airways obstruction, during oscillation of large and medium airway walls, and when excessive secretions within the airways move with a wave or slug motion.

PEDIATRICS ◽  
1977 ◽  
Vol 59 (5) ◽  
pp. 783-785
Author(s):  
V. Chernick

Fundamental physiological work in the late 1960s provided for the first time a clear understanding of (1) the role of the small airways (< 2 mm in diameter) in determining overall airway resistance to gas flow and (2) the relationship between central and peripheral airway resistance and lung growth.1,2 Involvement of the small airways early in the course of cystic fibrosis has been previously commented upon and documented in Pediatrics.3-5 After the age of about 5 years, the flow resistance of peripheral airways constitutes only about 10% to 20% of total pulmonary flow resistance,2 a fraction so small that conventional measurement of total resistance cannot detect small changes in the peripheral component.


Author(s):  
Liping Pang ◽  
Shangmin Li ◽  
Hu Yuan ◽  
Liqiang Duan

Abstract When the supercritical boiler is working at low load during flexible operation, the uneven distribution of the gas-liquid flow at the intermediate header may affect the safety of the water-cooled wall at the vertical parallel panels. In order to improve the uniformity of gas-liquid flow distribution in the water-cooled wall of intermediate header and study the internal flow mechanism, a flute inside the header is applied with parallel vertical parallel channels and experiments under different operating conditions are conducted to verify the effectiveness of this geometrical structure. The flow pattern in the experiment belongs to stratified and wavy flow. Computational fluid dynamic (CFD) simulation is conducted in order to investigate two-phase flow distribution behavior inside a flute header. It was found that the radial gas phase distribution in the flute tube shows a symmetrical relationship, and there are two vortexes in opposite directions. With the increasing distance from the inlet, the uniformity of the gas phase distribution becomes even. The gravity is greater than the drag force, which has effect on the two-phase flow distribution. The gas phase velocity has been improved inside flute section and liquid phase flow has more even flow distribution along annular section. It makes liquid phase sent to far end of flute header. That benefits two-phase flow distribution along 10 parallel channels equally.


2012 ◽  
Vol 9 (1) ◽  
pp. 131-135
Author(s):  
M.A. Pakhomov

The paper presents the results of modeling the dynamics of flow, friction and heat transfer in a descending gas-liquid flow in the pipe. The mathematical model is based on the use of the Eulerian description for both phases. The effect of a change in the degree of dispersion of the gas phase at the input, flow rate, initial liquid temperature and its friction and heat transfer rate in a two-phase flow. Addition of the gas phase causes an increase in heat transfer and friction on the wall, and these effects become more noticeable with increasing gas content and bubble diameter.


Author(s):  
Niccolo Giannetti ◽  
Mark A.B. Redo ◽  
Kiyoshi Saito ◽  
Hiroaki Yoshimura

2013 ◽  
Vol 39 (1) ◽  
pp. 105-118
Author(s):  
Jacek Kurnatowski

Abstract Identification of coefficients determining flow resistance, in particular Manning’s roughness coefficients, is one of the possible inverse problems of mathematical modeling of flow distribution in looped river networks. The paper presents the solution of this problem for the lower Oder River network consisting of 78 branches connected by 62 nodes. Using results of six sets of flow measurements at particular network branches it was demonstrated that the application of iterative algorithm for roughness coefficients identification on the basis of the sensitivity-equation method leads to the explicit solution for all network branches, independent from initial values of identified coefficients.


1984 ◽  
Vol 39 (4) ◽  
pp. 751-765 ◽  
Author(s):  
Leon Troniewski ◽  
Roman Ulbrich

Sign in / Sign up

Export Citation Format

Share Document