Cardiopulmonary control during exercise in the duck

1983 ◽  
Vol 55 (5) ◽  
pp. 1574-1581 ◽  
Author(s):  
J. P. Kiley ◽  
M. R. Fedde

To determine the importance of nonhumoral drives to exercise hyperpnea in birds, we exercised adult White Pekin ducks on a treadmill (3 degrees incline) at 1.44 km X h-1 for 15 min during unidirectional artificial ventilation. Intrapulmonary gas concentrations and arterial blood gases could be regulated with this ventilation procedure while allowing ventilatory effort to be measured during both rest and exercise. Ducks were ventilated with gases containing either 4.0 or 5.0% CO2 in 19% O2 (balance N2) at a flow rate of 12 l X min-1. At that flow rate, arterial CO2 partial pressure (PaCO2) could be maintained within +/- 2 Torr of resting values throughout exercise. Arterial O2 partial pressure did not change significantly with exercise. Heart rate, mean arterial blood pressure, and mean right ventricular pressure increased significantly during exercise. On the average, minute ventilation (used as an indicator of the output from the central nervous system) increased approximately 400% over resting levels because of an increase in both tidal volume and respiratory frequency. CO2-sensitivity curves were obtained for each bird during rest. If the CO2 sensitivity remained unchanged during exercise, then the observed 1.5 Torr increase in PaCO2 during exercise would account for only about 6% of the total increase in ventilation over resting levels. During exercise, arterial [H+] increased approximately 4 nmol X l-1; this increase could account for about 18% of the total rise in ventilation. We conclude that only a minor component of the exercise hyperpnea in birds can be accounted for by a humoral mechanism; other factors, possibly from muscle afferents, appear responsible for most of the hyperpnea observed in the running duck.

1983 ◽  
Vol 54 (3) ◽  
pp. 803-808 ◽  
Author(s):  
S. Matalon ◽  
M. S. Nesarajah ◽  
J. A. Krasney ◽  
L. E. Farhi

We studied the cardiorespiratory effects of acute hypercapnia in 10 unanesthetized sheep. After a 15-min exposure to either 7.3 or 10% CO2 in air, we measured arterial blood gases, minute ventilation (VE), O2 consumption (VO2), cardiac output (Q), heart rate (HR), an index of left ventricular contractility [(dP/dt)/P], and vascular pressures. In addition, regional flows to all major organs were determined by injecting 15-microns radiolabeled microspheres into the left heart. Exposure to 7.3% CO2 (arterial CO2 partial pressure, PaCO2, 58 Torr) resulted in increased VE, (dP/dt)/P, and higher blood flows to the brain and respiratory muscles. All other variables remained unchanged. Exposure to 10% CO2 (PaCO2 75 Torr) resulted in a further augmentation of VE and a 48% increase in Q, which was associated with a tachycardia, a decrease in systemic vascular resistance, and an increase in VO2. Coronary and respiratory muscle flows increased, but all other variables remained unchanged. Thus the hemodynamic effects of hypercapnia are not related linearly to the level of PaCO2.


1986 ◽  
Vol 60 (2) ◽  
pp. 653-660 ◽  
Author(s):  
H. V. Forster ◽  
L. G. Pan ◽  
A. Funahashi

The major objective of this study was to test the hypothesis that arterial CO2 partial pressure (PaCO2) does not change in transitions from rest to steady-state exercise and between two levels of exercise. Nine young adults exercised on a treadmill or a bicycle (sit or supine) for 5 min at a mild work load (heart rate = 90 beats X min-1) and then 3 min at a moderate work load (heart rate = 150 beats X min-1). In some studies the moderate work load preceded the mild work load. Arterial blood was sampled from a catheterized artery. During all exercise tasks isocapnia was not strictly maintained (F greater than 4.0, P less than 0.001). For example, a 1-to 2-Torr hypocapnia was the dominant trend during the first 15–45 s after increasing treadmill speed, and a transient hypercapnia was most prevalent when treadmill speed was decreased. During steady-state exercise PaCO2 did not deviate by more than 1–3 Torr from PaCO2 during any resting posture, and PaCO2 differences between exercise intensities and conditions did not exceed 1–2 Torr. A mouthpiece-breathing valve system was not used in most studies, but when this system was used, it did not consistently affect exercise PaCO2. Increasing inspired O2 to 40% likewise did not consistently alter exercise PaCO2. Failure to maintain isocapnia throughout exercise indicates that the matching of alveolar ventilation (VA) to lung CO2 delivery is not exquisitely precise. Accordingly it is inappropriate to base theories of the exercise hyperpnea on the heretofore contention of precise matching.(ABSTRACT TRUNCATED AT 250 WORDS)


1983 ◽  
Vol 54 (5) ◽  
pp. 1394-1402 ◽  
Author(s):  
L. G. Pan ◽  
H. V. Forster ◽  
G. E. Bisgard ◽  
R. P. Kaminski ◽  
S. M. Dorsey ◽  
...  

We studied blood gases in ponies to assess the relationship of alveolar ventilation (VA) to pulmonary CO2 delivery during moderate treadmill exercise. In normal ponies for 1.8, 3, or 6 mph, respectively, partial pressure of CO2 in arterial blood (PaCO2) decreased maximally by 3.1, 4.4, and 5.7 Torr at 30–90 s of exercise and remained below rest by 1.4, 2.3, and 4.5 Torr during steady-state (4–8 min) exercise (P less than 0.01). Partial pressure of O2 in arterial blood (PaO2) and arterial pH, (pHa) also reflected hyperventilation. Mixed venus CO2 partial pressure (PVCO2) decreased 2.3 and 2.9 Torr by 30 s for 3 and 6 mph, respectively (P less than 0.05). In work transitions either from 1.8 to 6 mph or from 6 mph to 1.8 mph, respectively, PaCO2 either decreased 3.8 Torr or increased 3.3 Torr by 45 s of the second work load (P less than 0.01). During exercise in acute (2–4 wk) carotid body denervated (CBD) ponies at 1.8, 3, or 6 mph, respectively, PaCO2 decreased maximally below rest by 9.0, 7.6, and 13.2 Torr at 30–45 s of exercise and remained below rest by 1.3, 2.3, and 7.8 Torr during steady-state (4–8 min) exercise (P less than 0.1). In the chronic (1–2 yr) CBD ponies, the hypocapnia was generally greater than normal but less than in the acute CBD ponies. We conclude that in the pony 1) VA is not tightly matched to pulmonary CO2 delivery during exercise, particularly during transitional states, 2) the exercise hyperpnea is not mediated by PaCO2 or PVCO2, and 3) during transitional states in the normal pony, the carotid bodies attenuate VA drive thereby reducing arterial hypocapnia.


1983 ◽  
Vol 54 (4) ◽  
pp. 997-1002 ◽  
Author(s):  
J. F. Green ◽  
M. I. Sheldon

To examine the influence of pulmonary blood flow (Qp) on spontaneous ventilation (VE), we isolated the systemic and pulmonary circulations and controlled the arterial blood gases and blood flow (Q) in each circuit as we measured VE. Each dog was anesthetized with ketamine and maintained with halothane. Systemic Q was drained from the right atrium and pumped through an oxygenator and heat exchanger and returned to the aorta. An identical bypass was established for the pulmonary circulation, draining blood from the left atrium and pumping it to the pulmonary artery. The heart was fibrillated, all cannulas were brought through the chest wall, and the median sternotomy was closed. The dog was then allowed to breathe spontaneously. The arterial O2 partial pressure (PO2) of both circuits was maintained greater than 300 Torr. Systemic Q was maintained at 0.080 l X min-1 X kg-1. Initially the arterial CO2 partial pressure (PCO2) of both circuits was set at 40 Torr as Qp was varied randomly between approximately 0.025 and 0.175 l X min-1 X kg-1. The average VE-Qp relationship was linear with a slope of 1.45 (P less than 0.0005). Increasing the arterial PCO2 of both circuits to 60 Torr elevated VE an average of 0.37 l X min-1 X kg-1 at each level of Qp (P less than 0.0005). Vagotomy abolished the effect of Qp on VE. Increasing Qp affected the systemic arterial PCO2-VE response curve by shifting it upward without altering its slope. These results demonstrate that increases in Qp are associated with increases in VE. This phenomenon may contribute to exercise hyperpnea.


1982 ◽  
Vol 91 (6) ◽  
pp. 615-621 ◽  
Author(s):  
Peak Woo ◽  
Stephen Eurenius

Venturi jet ventilation with the oxygen injector needle placed within the lumen of the laryngoscope was studied systematically in two dogs undergoing repeated general anesthesia suspension laryngoscopy. Using a total body plethysmograph, the effect of changes of needle angle, position and its effect on tidal volume delivery were measured. The changes of pressure regulator, flow rate and needle size were correlated with the volume delivery. Intratracheal pressure during Venturi ventilation was measured. Correlation of arterial blood gases and minute ventilation with the system was done. While ventilatory capacity is able to be achieved predictably, there are many variables. Optimal placement of the needle tip for maximum safety and efficiency appears to be at the midthird or lower third of the laryngoscope. It is important to center the needle axis to the laryngoscope axis. Other parameters subject to choice are the selection of needle size, regulator pressure setting and flow rate setting. By first selecting the correct needle size that will hyperinflate the subject, the pressure regulator can then be reduced to achieve ventilatory volumes similar to spontaneous tidal volumes. In prolonged use, the Venturi system was able to provide excellent ventilation safely and predictably.


1987 ◽  
Vol 253 (4) ◽  
pp. H890-H897 ◽  
Author(s):  
R. W. McPherson ◽  
D. Eimerl ◽  
R. J. Traystman

The interaction of hypoxic hypoxia, hypercapnia, and mean arterial blood pressure (MABP) was studied in 15 pentobarbital-anesthetized ventilated dogs. In one group of animals (n = 5) hypercapnia [arterial CO2 partial pressure (PaCO2) approximately 50 Torr] was added to both moderate hypoxia and severe hypoxia. Moderate hypoxia [arterial O2 partial pressure (PaO2) = 36 mmHg] increased MABP and cerebral blood flow (CBF) without changes in cerebral O2 uptake (CMRO2). Superimposed hypercapnia increased CBF and MABP further with no change in CMRO2. In another group of animals (n = 5), a MABP increase of approximately 40 mmHg during moderate hypoxia without hypercapnia did not further increase CBF, suggesting intact autoregulation. Thus, during moderate hypoxia, hypercapnia is capable of increasing CBF. Severe hypoxia (PaO2 = 22 mmHg) increased CBF, but MABP and CMRO2 declined. Superimposed hypercapnia further decreased MABP and decreased CBF from its elevated level and further decreased CMRO2. Raising MABP under these circumstances in another animal group (n = 5) increased CBF above the level present during severe hypoxia alone and increased CMRO2. The change in CBF and CMRO2 during severe hypoxia plus hypercapnia with MABP elevation were not different from that severe hypoxia alone. We conclude that, during hypoxia sufficiently severe to impair CMRO2, superimposed hypercapnia has a detrimental influence due to decreased MABP, which causes a decrease in CBF and cerebral O2 delivery.


1985 ◽  
Vol 59 (6) ◽  
pp. 1955-1960 ◽  
Author(s):  
B. R. Walker ◽  
E. M. Adams ◽  
N. F. Voelkel

As a fossorial species the hamster differs in its natural habitat from the rat. Experiments were performed to determine possible differences between the ventilatory responses of awake hamsters and rats to acute exposure to hypoxic and hypercapnic environments. Ventilation was measured with the barometric method while the animals were conscious and unrestrained in a sealed plethysmograph. Tidal volume (VT), respiratory frequency (f), and inspiratory (TI) and expiratory (TE) time measurements were made while the animals breathed normoxic (30% O2), hypercapnic (5% CO2), or hypoxic (10% O2) gases. Arterial blood gases were also measured in both species while exposed to each of these atmospheric conditions. During inhalation of normoxic gas, the VT/100 g was greater and f was lower in the hamster than in the rat. Overall minute ventilation (VE/100 g) in the hamster was less than in the rat, which was reflected in the lower PO2 and higher PCO2 of the hamster arterial blood. When exposed to hypercapnia, the hamster increased VE/100 g solely through VT; however, the VE/100 g increase was significantly less than in the rat. In response to hypoxia, the hamster and rat increased VE/100 g by similar amounts; however, the hamster VE/100 g increase was through f alone, whereas the rat increased both VT/100 g and f. Mean airflow rates (VT/TI) were no different in the hamster or rat in each gas environment; therefore most of the ventilatory responses were the result of changes in TI and TE and respiratory duty cycle (TI/TT).


2016 ◽  
Vol 120 (2) ◽  
pp. 282-296 ◽  
Author(s):  
Michael M. Tymko ◽  
Ryan L. Hoiland ◽  
Tomas Kuca ◽  
Lindsey M. Boulet ◽  
Joshua C. Tremblay ◽  
...  

Our aim was to quantify the end-tidal-to-arterial gas gradients for O2 (PET-PaO2) and CO2 (Pa-PETCO2) during a CO2 reactivity test to determine their influence on the cerebrovascular (CVR) and ventilatory (HCVR) response in subjects with (PFO+, n = 8) and without (PFO−, n = 7) a patent foramen ovale (PFO). We hypothesized that 1) the Pa-PETCO2 would be greater in hypoxia compared with normoxia, 2) the Pa-PETCO2 would be similar, whereas the PET-PaO2 gradient would be greater in those with a PFO, 3) the HCVR and CVR would be underestimated when plotted against PETCO2 compared with PaCO2, and 4) previously derived prediction algorithms will accurately target PaCO2. PETCO2 was controlled by dynamic end-tidal forcing in steady-state steps of −8, −4, 0, +4, and +8 mmHg from baseline in normoxia and hypoxia. Minute ventilation (V̇E), internal carotid artery blood flow (Q̇ICA), middle cerebral artery blood velocity (MCAv), and temperature corrected end-tidal and arterial blood gases were measured throughout experimentation. HCVR and CVR were calculated using linear regression analysis by indexing V̇E and relative changes in Q̇ICA, and MCAv against PETCO2, predicted PaCO2, and measured PaCO2. The Pa-PETCO2 was similar between hypoxia and normoxia and PFO+ and PFO−. The PET-PaO2 was greater in PFO+ by 2.1 mmHg during normoxia ( P = 0.003). HCVR and CVR plotted against PETCO2 underestimated HCVR and CVR indexed against PaCO2 in normoxia and hypoxia. Our PaCO2 prediction equation modestly improved estimates of HCVR and CVR. In summary, care must be taken when indexing reactivity measures to PETCO2 compared with PaCO2.


1962 ◽  
Vol 17 (5) ◽  
pp. 771-774 ◽  
Author(s):  
Herman F. Froeb

The ventilatory stimulation arising from two different forms of passively induced body motion was chosen for study of 14 male emphysematous subjects with hypercapnia and impaired ventilatory response to carbon dioxide. Nine normal males served as controls. The object of the study was to determine whether the stimulus to ventilation from passive body motion was intact in diseased subjects and whether it could serve as a therapeutic tool by bringing about a reduction in blood carbon dioxide. The results revealed that the stimulus to ventilation was mild and comparable in both groups but was associated with two to three times more oxygen per extra liter of minute ventilation in the diseased subjects. There were no significant changes in the arterial blood gases. It was concluded that the stimulus to ventilation from passive body motion arises from weak muscle action and has no therapeutic application in emphysematous subjects as a means of lowering the PaCOCO2. Note: (With the Technical Assistance of Mabel Pearson, Roy Engstrom, Christa McReynolds, and Carol Kennedy) Submitted on March 5, 1962


1988 ◽  
Vol 64 (5) ◽  
pp. 1870-1877 ◽  
Author(s):  
M. A. Bureau ◽  
J. L. Carroll ◽  
E. Canet

This study was undertaken to measure the neonate's response to CO-induced hypoxia in the first 10 days of life. CO breathing was used to induce hypoxia because CO causes tissue hypoxia with no or minimal chemoreceptor stimulation. An inspired gas mixture of 0.25 to 0.5% CO in air was used to raise the blood carboxyhemoglobin (HbCO) progressively from 0 to 60% over approximately 20 min. The study, conducted in awake conscious lambs aged 2 and 10 days, consisted in measuring the response of ventilation and the change in arterial blood gases during the rise of HbCO. The results showed that the 2- and 10-day-old lambs tolerated very high HbCO levels without an increase in minute ventilation (VE) and without metabolic acidosis. At both ages, HbCO caused no VE change until HbCO levels rose to between 45 and 50% after which the VE change was exponential in some animals but minimal in others. The VE change was brought about by a rise in tidal volume and respiratory frequency. During the period of maturation from 2 to 10 days, there was a small shift to the right in the VE-HbCO response. In the 10-day-old lambs the VE response to high HbCO was greater than that of the 2-day-olds because of the lambs' higher respiratory frequency response. Six of the 10-day-old lambs but only two of the 2-day-old lambs showed a hypoxic tachypnea to HbCO of 55–65%. None of the lambs developed periodic breathing, dysrhythmic breathing, or recurrent apneas with an HbCO level as high as 60%.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document