Canine gastrocnemius disuse atrophy: resistance to paralysis by dimethyl tubocurarine

1984 ◽  
Vol 57 (5) ◽  
pp. 1502-1506 ◽  
Author(s):  
G. A. Gronert ◽  
R. S. Matteo ◽  
S. Perkins

Ten dogs developed unilateral gastrocnemius disuse atrophy after unilateral hindlimb immobilization in a cast for 25 days. Dose-response curves to dimethyl tubocurarine (MTC) were determined during anesthesia with pentobarbital sodium-N2O. Bolus and continuous infusion increments of MTC every 30 min provided steady-state blood levels at each stage of paralysis. Both gastrocnemius tendons were sectioned and attached to transducers. Both sciatic nerves were stimulated every 30 min: 2 Hz for 2 s, a 15-s pause, 50 Hz for 2 s. Dose-response curves, computer calculated by nonlinear regression using a sigmoid maximal effect model of the Hill equation, were parallel for the data relating blocking of tetanus to dose of MTC. The 50% paralyzing dose (tetanus) for control vs. casted gastrocnemius muscle was 64 vs. 813 mg/kg; corresponding plasma concentrations were 0.12 vs. 2.0 micrograms/ml. Thus in vivo simultaneous tension measurements of both gastrocnemius muscles, one casted and one uncasted, demonstrated resistance to paralysis by MTC in muscle with disuse atrophy.

1997 ◽  
Vol 78 (04) ◽  
pp. 1286-1292 ◽  
Author(s):  
Margareta Elg ◽  
David Gustafsson ◽  
Johanna Deinum

SummaryThe relation between the antithrombotic effect in vivo, and the inhibition constant (K i) and the association rate constant (k on) in vitro was investigated for eight different thrombin inhibitors. The carotid arteries of anaesthetized rats were exposed to FeCl3 for 1 h, and the thrombus size was determined from the amount of incorporated 125I- fibrinogen. The thrombin inhibitors were given intravenously, and complete concentration- and/or dose-response curves were constructed. Despite a 50,000-fold difference between the k i-values comparable plasma concentrations of hirudin and melagatran were needed (0.14 and 0.12 μmol 1-1, respectively) to obtain a 50% antithrombotic effect (IC50) in vivo. In contrast, there was a comparable in vitro (k i-value) and in vivo (IC50) potency ratio for melagatran and inogatran, respectively. These results can be explained by the concentration of thrombin in the thrombus and improved inhibition by the low-molecular-weight compounds. For all eight thrombin inhibitors tested, there was an inverse relationship between k on-values in vitro and the slope of the dose response curves in vivo. Inhibitors with k on-values of <1 X 107 M-1 s-1 gave steep dose response curves with a Hill coefficient >1. The association time for inhibition of thrombin for slow-binding inhibitors will be too long to give effective antithrombotic effects at low plasma concentrations, but at increasing concentrations the association time will decrease, resulting in a steeper dose-response curve and thereby a more narrow therapeutic interval.


2008 ◽  
Vol 52 (8) ◽  
pp. 2797-2805 ◽  
Author(s):  
Sandrine Lemaire ◽  
Aurélie Olivier ◽  
Françoise Van Bambeke ◽  
Paul M. Tulkens ◽  
Peter C. Appelbaum ◽  
...  

ABSTRACT Staphylococcus aureus invades eukaryotic cells. When methicillin-resistant S. aureus (MRSA) ATCC 33591 is phagocytized by human THP-1 macrophages, complete restoration of susceptibility to cloxacillin and meropenem is shown and the strain becomes indistinguishable from MSSA ATCC 25923 due to the acid pH prevailing in phagolysosomes (S. Lemaire et al., Antimicrob. Agents Chemother. 51:1627-1632, 2007). We examined whether this observation can be extended to (i) strains of current clinical and epidemiological interest (three hospital-acquired MRSA [HA-MRSA] strains, two community-acquired MRSA [CA-MRSA] strains, two HA-MRSA strains with the vancomycin-intermediate phenotype, one HA-MRSA strain with the vancomycin-resistant phenotype, and one animal [porcine] MRSA strain), (ii) activated THP-1 cells and nonprofessional phagocytes (keratinocytes, Calu-3 bronchial epithelial cells), and (iii) other β-lactams (imipenem, oxacillin, cefuroxime, cefepime). All strains showed (i) a marked reduction in MICs in broth at pH 5.5 compared with the MIC at pH 7.4 and (ii) sigmoidal dose-response curves with cloxacillin (0.01× to 100× MIC, 24 h of incubation) after phagocytosis by THP-1 macrophages that were indistinguishable from each other and from the dose-response curve for methicillin-susceptible S. aureus (MSSA) ATCC 25923 (relative potency [50% effect], 6.09× MIC [95% confidence interval {CI}, 4.50 to 8.25]; relative efficacy [change in bacterial counts over the original inoculum for an infinitely large cloxacillin concentration, or maximal effect], −0.69 log CFU [95% CI, −0.79 to −0.58]). Similar dose-response curves for cloxacillin were also observed with MSSA ATCC 25923 and MRSA ATCC 33591 after phagocytosis by activated THP-1 macrophages, keratinocytes, and Calu-3 cells. By contrast, there was a lower level of restoration of susceptibility of MRSA ATCC 33591 to cefuroxime and cefepime after phagocytosis by THP-1 macrophages, even when the data were normalized for differences in MICs. We conclude that the restoration of MRSA susceptibility to β-lactams after phagocytosis is independent of the strain and the types of cells but varies between β-lactams.


Author(s):  
Shensheng Zhao ◽  
Sebastiaan Wesseling ◽  
Bert Spenkelink ◽  
Ivonne M. C. M. Rietjens

AbstractThe present study predicts in vivo human and rat red blood cell (RBC) acetylcholinesterase (AChE) inhibition upon diazinon (DZN) exposure using physiological based kinetic (PBK) modelling-facilitated reverse dosimetry. Due to the fact that both DZN and its oxon metabolite diazoxon (DZO) can inhibit AChE, a toxic equivalency factor (TEF) was included in the PBK model to combine the effect of DZN and DZO when predicting in vivo AChE inhibition. The PBK models were defined based on kinetic constants derived from in vitro incubations with liver fractions or plasma of rat and human, and were used to translate in vitro concentration–response curves for AChE inhibition obtained in the current study to predicted in vivo dose–response curves. The predicted dose–response curves for rat matched available in vivo data on AChE inhibition, and the benchmark dose lower confidence limits for 10% inhibition (BMDL10 values) were in line with the reported BMDL10 values. Humans were predicted to be 6-fold more sensitive than rats in terms of AChE inhibition, mainly because of inter-species differences in toxicokinetics. It is concluded that the TEF-coded DZN PBK model combined with quantitative in vitro to in vivo extrapolation (QIVIVE) provides an adequate approach to predict RBC AChE inhibition upon acute oral DZN exposure, and can provide an alternative testing strategy for derivation of a point of departure (POD) in risk assessment.


1987 ◽  
Vol 253 (4) ◽  
pp. G497-G501 ◽  
Author(s):  
R. Leth ◽  
B. Elander ◽  
U. Haglund ◽  
L. Olbe ◽  
E. Fellenius

The histamine H2-receptor on the human parietal cell has been characterized by using dose-response curves and the negative logarithm of the molar concentration of an antagonist (pA2) analyses of cimetidine antagonism of betazole, histamine, and impromidine stimulation in isolated human and rabbit gastric glands. To evaluate the in vitro results, betazole-stimulated gastric acid secretion with and without cimetidine was also studied in healthy subjects. In the in vivo model, individual dose-response curves were shifted to the right with increasing cimetidine concentrations, but this was counteracted by increasing betazole doses, indicating competitive, reversible antagonism. The pA2 values ranged from 6.1 to 6.3. In isolated human gastric glands, impromidine was shown to be eight times more potent than histamine, indicating higher receptor affinity, but the maximally stimulated aminopyrine accumulation was the same as for histamine, and the pA2 values for cimetidine antagonism did not differ significantly, i.e., 5.7 (histamine) and 6.1 (impromidine). In isolated rabbit gastric glands, cimetidine inhibited the histamine- and impromidine-stimulated response with pA2 values of 6.0 and 7.3, respectively. Impromidine was shown to be approximately 100 times more potent than in human gastric glands, whereas histamine had the same potency. This confirms the role of the histamine H2-receptor and suggests a difference between the species concerning receptor affinity.


2011 ◽  
Vol 111 (6) ◽  
pp. 1703-1709 ◽  
Author(s):  
Megan M. Wenner ◽  
Thad E. Wilson ◽  
Scott L. Davis ◽  
Nina S. Stachenfeld

Although dose-response curves are commonly used to describe in vivo cutaneous α-adrenergic responses, modeling parameters and analyses methods are not consistent across studies. The goal of the present investigation was to compare three analysis methods for in vivo cutaneous vasoconstriction studies using one reference data set. Eight women (22 ± 1 yr, 24 ± 1 kg/m2) were instrumented with three cutaneous microdialysis probes for progressive norepinephrine (NE) infusions (1 × 10−8, 1 × 10−6, 1 × 10−5, 1 × 10−4, and 1 × 10−3 logM). NE was infused alone, co-infused with NG-monomethyl-l-arginine (l-NMMA, 10 mM) or Ketorolac tromethamine (KETO, 10 mM). For each probe, dose-response curves were generated using three commonly reported analyses methods: 1) nonlinear modeling without data manipulation, 2) nonlinear modeling with data normalization and constraints, and 3) percent change from baseline without modeling. Not all data conformed to sigmoidal dose-response curves using analysis 1, whereas all subjects' curves were modeled using analysis 2. When analyzing only curves that fit the sigmoidal model, NE + KETO induced a leftward shift in ED50 compared with NE alone with analyses 1 and 2 ( F test, P < 0.05) but only tended to shift the response leftward with analysis 3 (repeated-measures ANOVA, P = 0.08). Neither maximal vasoconstrictor capacity (Emax) in analysis 1 nor %change CVC change from baseline in analysis 3 were altered by blocking agents. In conclusion, although the overall detection of curve shifts and interpretation was similar between the two modeling methods of curve fitting, analysis 2 produced more sigmoidal curves.


2005 ◽  
Vol 98 (5) ◽  
pp. 1603-1606 ◽  
Author(s):  
Robert H. Brown ◽  
William Wizeman ◽  
Christopher Danek ◽  
Wayne Mitzner

A recent study has reported that the application of thermal energy delivered through a bronchoscope (bronchial thermoplasty) impairs the ability of airway smooth muscle to shorten in response to methacholine (MCh)(Danek CJ, Lombard CM, Dungworth DL, Cox PG, Miller JD, Biggs MJ, Keast TM, Loomas BE, Wizeman WJ, Hogg JC, and Leff AR. J Appl Physiol 97: 1946–1953, 2004). If such a technique is successful, it has the potential to serve as a therapy to attenuate airway narrowing in asthmatic subjects regardless of the initiating cause that stimulates the smooth muscle. In the present study, we have applied high-resolution computed tomography to accurately quantify the changes in airway area before and after a standard MCh aerosol challenge in airways treated with bronchial thermoplasty. We studied a total of 193 airways ranging from 2 to 15 mm in six dogs. These were divided into treated and control populations. The MCh dose-response curves in untreated airways and soon-to-be-treated airways were superimposable. In contrast, the dose-response curves in treated airways were shifted upward at all points, showing a significantly decreased sensitivity to MCh at both 2 and 4 wk posttreatment. These results thus show that treated airways have significantly increased luminal area at any dose of inhaled MCh compared with untreated airways. The work in this study thus supports the underlying concept that impairing the smooth muscle may be an effective treatment for asthma.


2016 ◽  
Vol 120 (7) ◽  
pp. 784-791 ◽  
Author(s):  
Aleksandra Mazur ◽  
Kate Lambrechts ◽  
Qiong Wang ◽  
Marc Belhomme ◽  
Michael Theron ◽  
...  

Studies conducted in divers indicate that endothelium function is impaired following a dive even without decompression sickness (DCS). Our previous experiment conducted on rat isolated vessels showed no differences in endothelium-dependent vasodilation after a simulated dive even in the presence of DCS, while contractile response to phenylephrine was progressively impaired with increased decompression stress. This study aimed to further investigate the effect of DCS on vascular smooth muscle. Thirty-two male Sprague-Dawley rats were submitted to the same hyperbaric protocol and classified according to the severity of DCS: no-DCS (without clinical symptoms), mild-DCS, or severe-DCS (dead within 1 h). A control group remained at atmospheric pressure. Isometric tension was measured in rings of abdominal aorta and mesenteric arteries. Single dose contraction was assessed with KCl solution. Dose-response curves were obtained with phenylephrine and endothelin-1. Phenylephrine-induced contraction was observed in the presence of antioxidant tempol. Additionally, plasma concentrations of angiotensin II, angiotensin-converting enzyme, and thiobarbituric acid reactive substances (TBARS) were assessed. Response to phenylephrine was impaired only among mild-DCS in both vessels. Dose-response curves to endothelin-1 were impaired after mild-DCS in mesenteric and severe-DCS in aorta. KCl-induced contraction was affected after hyperbaric exposure regardless of DCS status in aorta only. These results confirm postdive vascular dysfunction is dependent on the type of vessel. It further evidenced that vascular dysfunction is triggered by DCS rather than by diving itself and suggest the influence of circulating factor/s. Diving-induced impairment of the L-type voltage-dependent Ca2+ channels and/or influence of renin-angiotensin system is proposed.


2017 ◽  
Author(s):  
Andrew K. Smith ◽  
Yanli Xu ◽  
Glen E.P. Ropella ◽  
C. Anthony Hunt

AbstractAn improved understanding of in vivo-to-in vitro hepatocyte changes is crucial to interpreting in vitro data correctly and further improving hepatocyte-based in vitro-to-in vivo extrapolations to human targets. We demonstrate using virtual experiments as a means to help untangle plausible causes of inaccurate extrapolations. We start with virtual mice that have biomimetic software livers. Earlier, using those mice, we discovered model mechanisms that enabled achieving quantitative validation targets while also providing plausible causal explanations for temporal characteristics of acetaminophen hepatotoxicity. We isolated virtual hepatocytes, created a virtual culture, and then conducted dose-response experiments in both culture and mice. We expected the two dose-response curves to be displaced. We were surprised that they crossed because it evidenced that simulated acetaminophen metabolism and toxicity are different for virtual culture and mouse contexts even though individual hepatocyte mechanisms were unchanged. Crossing dose-response curves is a virtual example of an in vivo-to-in vitro disconnect. We use detailed results of experiments to explain the disconnect. Individual hepatocytes contribute differently to system level phenomena. In liver, hepatocytes are exposed to acetaminophen sequentially. Relative production of the reactive acetaminophen metabolite is largest (smallest) in pericentral (periportal) hepatocytes. Because that sequential exposure is absent in culture, hepatocytes from different lobular locations do not respond the same. A virtual Culture-to-Mouse translation can stand as a scientifically challengeable theory explaining an in vitro-in vivo disconnect. It provides a framework to develop more reliable interpretations of in vitro observations, which then may be used to improve extrapolations.AbbreviationsaHPCanalog hepatocyteAPAPacetaminophenCVCentral VeinSSsinusoidal segmentNAPQIN-acetyl-p-benzoquinone iminemitoDmitochondrial damage productsnonMDnon-mitochondrial damage products


1981 ◽  
Author(s):  
J Over ◽  
J A van Mourik ◽  
P van den Brink-Zantingh ◽  
R Smit-Jansen

Assay of Factor VIII coagulant activity (VIII: C) in Factor VIII concentrates has since long met difficulties, such as l) non-paralleility of dose-response curves of plasma standard and Factor VIII concentrate, 2) spuriously low values of VIII: C in concentrates as revealed by abnormally high in vivo recoveries after transfusion, and 3) large interlaboratory variation in assay results. In an attempt to analyze the cause of these problems several parameters of the one-stage assay system were varied systematically and their effect on the parallellity of dose-response curves and on the final VIII: C value was analyzed. Nonparallel1ity was partially corrected with a protein-rich dilution medium, and almost always completely with undiluted instead of 1:1 diluted hemophilic substrate plasma. In both conditions apparently higher VIII:C values were found.A number of assay systems used by different producers of Factor VIII concentrates were compared. The standard and, in some cases, the phospholipid reagent seemed to contribute for the largest past to the inter1aboratory variation, but also other, as yet unidentified, factors exerted some influence. These findings initiated a cooperative study by five Red Cross Blood Transfusion Services in Europe on standardization of the one-stage assay for VIII:C. This resulted in a better correspondence between these institutes (CV 13%) compared to the previous situation (CV 23%).It is concluded that 1) substrate plasma should not be diluted, especially when Factor VIII concentrate is to be tested against a plasma standard, 2) the standard should be of the same type as the testmaterial, and 3) this standard should be properly calibrated against the International Standard for Factor VIII.


Blood ◽  
1994 ◽  
Vol 83 (1) ◽  
pp. 161-166 ◽  
Author(s):  
J Peng ◽  
P Friese ◽  
E Heilmann ◽  
JN George ◽  
SA Burstein ◽  
...  

Abstract After the intravenous infusion of N-hydroxysuccinimido biotin into dogs, 80.6% +/- 9.7% (n = 5) of platelets were covalently labeled with biotin. The in vivo survival of the biotinylated platelets was monitored by flow cytometry and was normal as compared with previous reports for dog platelets. The ability of the biotinylated platelets to be activated was analyzed by measuring the expression of cell-surface P- selectin after incubation with graded concentrations of thrombin. When P-selectin expression was examined 3 hours after labeling, biotinylated platelets were indistinguishable from the nonlabeled population of platelets, indicating that biotinylation did not adversely affect the cells. On consecutive days after biotinylation, the thrombin dose- response curves for biotinylated and nonbiotinylated platelets were repeated, and as the biotinylated-platelets aged, they became less responsive to thrombin. On days 3, 4, and 5, the thrombin EC50 for the aged, biotinylated platelets as compared with the total population of platelets was 136%, 150%, and 178%, respectively. Increasing age clearly impairs the reactivity of platelets towards thrombin as quantitated by the expression of cell-surface P-selectin.


Sign in / Sign up

Export Citation Format

Share Document