Site of recruitment in the pulmonary microcirculation

1989 ◽  
Vol 66 (5) ◽  
pp. 2079-2083 ◽  
Author(s):  
W. L. Hanson ◽  
J. D. Emhardt ◽  
J. P. Bartek ◽  
L. P. Latham ◽  
L. L. Checkley ◽  
...  

Increasing the total surface area of the pulmonary blood-gas interface by capillary recruitment is an important factor in maintaining adequate oxygenation when metabolic demands increase. Capillaries are known to be recruited during conditions that raise pulmonary blood flow and pressure. To determine whether pulmonary arterioles and venules are part of the recruitment process, we made in vivo microscopic observations of the subpleural microcirculation (all vessels less than 100 microns) in the upper lung where blood flow is low (zone 2). To evoke recruitment, pulmonary arterial pressure was elevated either by an intravascular fluid load or by airway hypoxia. Of 209 arteriolar segments compared during low and high pulmonary arterial pressures, none recruited or derecruited. Elevated arterial pressure, however, did increase the number of perfused capillary segments by 96% with hypoxia and 165% with fluid load. Recruitment was essentially absent in venules (4 cases of recruitment in 289 segments as pressure was raised). These data support the concept that recruitment in the pulmonary circulation is exclusively a capillary event.

2001 ◽  
Vol 90 (1) ◽  
pp. 261-268 ◽  
Author(s):  
Leonardo C. Clavijo ◽  
Mary B. Carter ◽  
Paul J. Matheson ◽  
Mark A. Wilson ◽  
William B. Wead ◽  
...  

In vivo pulmonary arterial catheterization was used to determine the mechanism by which platelet-activating factor (PAF) produces pulmonary edema in rats. PAF induces pulmonary edema by increasing pulmonary microvascular permeability (PMP) without changing the pulmonary pressure gradient. Rats were cannulated for measurement of pulmonary arterial pressure (Ppa) and mean arterial pressure. PMP was determined by using either in vivo fluorescent videomicroscopy or the ex vivo Evans blue dye technique. WEB 2086 was administered intravenously (IV) to antagonize specific PAF effects. Three experiments were performed: 1) IV PAF, 2) topical PAF, and 3) Escherichia coli bacteremia. IV PAF induced systemic hypotension with a decrease in Ppa. PMP increased after IV PAF in a dose-related manner. Topical PAF increased PMP but decreased Ppa only at high doses. Both PMP (88 ± 5%) and Ppa (50 ± 3%) increased during E. coli bacteremia. PAF-receptor blockade prevents changes in Ppa and PMP after both topical PAF and E. coli bacteremia. PAF, which has been shown to mediate pulmonary edema in prior studies, appears to act in the lung by primarily increasing microvascular permeability. The presence of PAF might be prerequisite for pulmonary vascular constriction during gram-negative bacteremia.


1986 ◽  
Vol 61 (6) ◽  
pp. 2136-2143 ◽  
Author(s):  
D. C. Curran-Everett ◽  
K. McAndrews ◽  
J. A. Krasney

The effects of acute hypoxia on regional pulmonary perfusion have been studied previously in anesthetized, artificially ventilated sheep (J. Appl. Physiol. 56: 338–342, 1984). That study indicated that a rise in pulmonary arterial pressure was associated with a shift of pulmonary blood flow toward dorsal (nondependent) areas of the lung. This study examined the relationship between the pulmonary arterial pressor response and regional pulmonary blood flow in five conscious, standing ewes during 96 h of normobaric hypoxia. The sheep were made hypoxic by N2 dilution in an environmental chamber [arterial O2 tension (PaO2) = 37–42 Torr, arterial CO2 tension (PaCO2) = 25–30 Torr]. Regional pulmonary blood flow was calculated by injecting 15-micron radiolabeled microspheres into the superior vena cava during normoxia and at 24-h intervals of hypoxia. Pulmonary arterial pressure increased from 12 Torr during normoxia to 19–22 Torr throughout hypoxia (alpha less than 0.049). Pulmonary blood flow, expressed as %QCO or ml X min-1 X g-1, did not shift among dorsal and ventral regions during hypoxia (alpha greater than 0.25); nor were there interlobar shifts of blood flow (alpha greater than 0.10). These data suggest that conscious, standing sheep do not demonstrate a shift in pulmonary blood flow during 96 h of normobaric hypoxia even though pulmonary arterial pressure rises 7–10 Torr. We question whether global hypoxic pulmonary vasoconstriction is, by itself, beneficial to the sheep.


1991 ◽  
Vol 70 (4) ◽  
pp. 1518-1523 ◽  
Author(s):  
W. J. Lamm ◽  
K. R. Kirk ◽  
W. L. Hanson ◽  
W. W. Wagner ◽  
R. K. Albert

We have previously observed flows equivalent to 15% of the resting cardiac output of rabbits occurring through isolated lungs that were completely in zone 1. To distinguish between alveolar corner vessels and alveolar septal vessels as a possible zone 1 pathway, we made in vivo microscopic observations of the subpleural alveolar capillaries in five anesthetized dogs. Videomicroscopic recordings were made via a transparent thoracic window with the animal in the right lateral position. From recordings of the uppermost surface of the left lung, alveolar septal and corner vessels were classified depending on whether they were located within or between alveoli, respectively. Observations were made with various levels of positive end-expiratory pressure (PEEP) applied only to the left lung via a double-lumen endotracheal tube. Consistent with convention, flow through septal vessels stopped when PEEP was raised to the mean pulmonary arterial pressure (the zone 1-zone 2 border). However, flow through alveolar corner vessels continued until PEEP was 8-16 cmH2O greater than mean pulmonary arterial pressure (8-16 cm into zone 1). These direct observations support the idea that alveolar corner vessels rather than patent septal vessels provide the pathway for blood flow under zone 1 conditions.


1989 ◽  
Vol 67 (3) ◽  
pp. 202-206 ◽  
Author(s):  
Michele Smith ◽  
Geoffrey Coates ◽  
J. Michael Kay ◽  
Hugh O'Brodovich

Pneumonectomy approximately halves the available pulmonary vascular bed. It is unknown whether the remaining lung has sufficient vascular reserve to cope with increased blood flow under stressful conditions without demonstrating abnormal pulmonary hemodynamics. To investigate this question, unanesthetized ewes with vascular catheters had hemodynamics assessed before and after a left pneumonectomy. Subsequently, on different days, the sheep were exercised on a treadmill under normoxic and hypobaric hypoxic (430 mmHg) (1 mmHg = 133.3 Pa) conditions. Pneumonectomy itself increased mean pulmonary arterial pressure by 4 mmHg. During normoxic or hypoxic exercise, the pneumonectomized sheep demonstrated a pulmonary hemodynamic response similar to normal sheep with two lungs. The pressure–flow relation for the right lung suggested the vascular reserve of the lung was not exceeded during exercise in the pneumonectomized sheep. Eighteen to 70 days after pneumonectomy there was no evidence of right ventricular hypertrophy, but there were small increases in the number of muscularized vessels less than 50 μm diameter and in the amount of muscle in normally muscularized pulmonary arteries. This study demonstrates that pneumonectomy slightly increases mean pulmonary arterial pressure. However, there is sufficient vascular reserve in the remaining lung to permit a normal hemodynamic response to exercise-induced increased blood flow even under hypoxic conditions.Key words: pulmonary hypertension, pneumonectomy, sheep.


1990 ◽  
Vol 258 (5) ◽  
pp. H1550-H1558
Author(s):  
R. K. Minkes ◽  
P. J. Kadowitz

Cardiovascular responses to endothelin 2 (ET-2) and sarafotoxin 6b (S6b) were investigated in the cat. ET-2 (0.1-1 nmol/kg iv) decreased or elicited biphasic changes in arterial pressure (AP), whereas S6b (0.1-1 nmol/kg iv) only decreased AP. Central venous pressure (CVP), cardiac output (CO), and pulmonary arterial pressure (PAP) were increased. ET-2 produced biphasic changes in systemic vascular resistance (SVR), whereas S6b decreased SVR at the two lower doses and caused a biphasic change at the 1 nmol/kg dose. The effects of ET-1 and ET-2 were similar, whereas the effects of S6b were similar to ET-3. ET-2 and S6b had small effects on right ventricular contractile force and caused transient increases in heart rate. Distal aortic blood flow was increased in response to all doses of both peptides, whereas increases in carotid blood flow were observed only in response to the higher doses of ET-2 and S6b. ET-2 produced dose-dependent decreases in superior mesenteric artery (SMA) blood flow, whereas decreases in SMA flow in response to S6b were observed only at the 1 nmol/kg dose. Renal blood flow was decreased significantly only at the higher doses of ET-2 and S6b. The present data show that ET-2 and S6b can produce both vasodilation and vasoconstriction in the systemic and regional vascular beds of the cat and demonstrate previously unrecognized vasodilator activity in response to S6b. It is concluded that ET-2 and S6b produce complex cardiovascular responses in the anesthetized cat.


1989 ◽  
Vol 40 (4) ◽  
pp. 879 ◽  
Author(s):  
PM Harris ◽  
DW Dellow ◽  
BR Sinclair

An arterio-venous preparation was developed which allowed infusion into, and/or sampling from, branches of the deep circumflex iliac artery and vein supplying and draining a discrete area of skin on the abdominal flank of Romney sheep.Measurements of blood flow (using dye dilution techniques), utilization or output of energy metabolites (oxygen, glucose, lactate and acetate) and amino acid metabolism were made in relation to whole body protein and energy metabolism.Measurements on the patch suggested that blood flow to the total skin was about 6% of cardiac output but that only 1-2% of whole body oxygen utilization occurred in the skin. This was partly accounted for by a significant proportion of glucose uptake (1.15 g day-1) being anaerobically oxidized to lactate (0.41 g day-1). Measurements of protein synthesis in the patch showed that between 10 and 16% of whole body protein synthesis occurs in the skin.Results from the preparation demonstrate that it is a useful procedure to study metabolism in a defined patch of skin in the intact animal.


1977 ◽  
Vol 43 (1) ◽  
pp. 8-13 ◽  
Author(s):  
E. J. Quebbeman ◽  
C. A. Dawson

Isolated cat lungs were perfused with constant blood flow. During control conditions (Pa02, 100 Torr), pulmonary artery pressure increased as the lungs were inflated. Hypoxia (Pa02, 22 Torr) increased arterial pressure. However, as the lungs were inflated arterial pressure fell. Thus, the magnitude of the hypoxic pressor response was reduced by inflation. During control conditions, arterial volume (ether bolus method) increased with increasing transpulmonary pressure. Hypoxia decreased arterial volume, and the increase in arterial volume with inflation was somewhat less than that during control conditions. When the influences of vascular and transpulmonary pressures were examined independently by changing one while holding the other constant, increasing transpulmonary pressure increased arterial volume beyond that which could be accounted for by changes in the differences between arterial and pleural pressure. However, this influence of transpulmonary pressure did not appear to be altered by hypoxia. Thus, while hypoxia decreased arterial volume at all levels of lung inflation, it had relatively little effect on the influence of interdependence between the pulmonary arterial bed and the surrounding lung tissue.


1985 ◽  
Vol 58 (3) ◽  
pp. 812-818 ◽  
Author(s):  
T. N. Hansen ◽  
A. L. Le Blanc ◽  
A. L. Gest

To assess the effects of alveolar hypoxia and angiotensin II infusion on distribution of blood flow to the lung we performed perfusion lung scans on anesthetized mechanically ventilated lambs. Scans were obtained by injecting 1–2 mCi of technetium-labeled albumin macroaggregates as the lambs were ventilated with air, with 10–14% O2 in N2, or with air while receiving angiotensin II intravenously. We found that both alveolar hypoxia and infusion of angiotensin II increased pulmonary vascular resistance and redistributed blood flow from the mid and lower lung regions towards the upper posterior region of the lung. We assessed the effects of angiotensin II infusion on filtration pressure in six lambs by measuring the rate of lung lymph flow and the protein concentration of samples of lung lymph. We found that angiotensin II infusion increased pulmonary arterial pressure 50%, lung lymph flow 90%, and decreased the concentration of protein in lymph relative to plasma. These results are identical to those seen when filtration pressure increases during alveolar hypoxia. We conclude that alveolar hypoxia and angiotensin II infusion both increase fluid filtration in the lung by increasing filtration pressure. The increase in filtration pressure may be the result of a redistribution of blood flow in the lung with relative overperfusion of vessels in some areas and transmission of the elevated pulmonary arterial pressure to fluid-exchanging sites in those vessels.


Sign in / Sign up

Export Citation Format

Share Document