Right ventricular function and three-dimensional modeling using computer-aided design

1990 ◽  
Vol 68 (4) ◽  
pp. 1707-1716 ◽  
Author(s):  
F. G. Spinale ◽  
B. A. Carabello ◽  
F. A. Crawford

Right ventricular (RV) volumetric and morphological analysis is complicated by the trabeculations and geometric configuration of the RV chamber. To improve RV analysis, custom computer-aided design programs were employed to obtain RV volumes and three-dimensional models from biplane ventriculograms. Biplane RV ventriculograms were analyzed from 14 anesthetized dogs and 22 RV casts. Computed volumes were highly correlated with reference RV volumes (r = 0.98, n = 36, P less than 0.01) with a range of 5-73 ml. Three-dimensional wire-frame and solid models constructed from the ventriculographic images provided excellent detail and a new perspective in chamber shape. This modeling technique was then used to examine RV volumes, geometric conformation, and regional shortening in 10 pigs during inotropic stimulation and preload reduction. Changes in RV volumes, ejection fraction, and regional motion were detected as well as alterations in chamber conformation. In summary 1) computer-aided design offers an accurate and simplified means to compute RV volumes using basic microcomputer equipment, and 2) three-dimensional reconstruction provided a unique view of RV geometry and a means to examine regional RV function.

2006 ◽  
Vol 53 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Aleksandar Todorovic ◽  
Vojkan Lazic

CAD/CAM technology (Computer Aided Design / Computer Aided Manufacturing) in the matter of fact helps in design and development of two-dimensional or three-dimensional models and their realization on numerical controlled machines. The key to direct or indirect CAD/CAM dental restorations is the measurement of dental preparation in the mouth or on the plaster die. The aim of this paper is to describe the possibilities and the way of function of different computer aided inspection (CAI) systems as a first part of CAD/CAM systems. Different researchers have presented several approaches of methods for three dimensional (3D) measurement. Today, for chairside dental treatment, only the optical method of measurement has lead to satisfactory results in practice. Laboratory CAD/CAM systems use mechanical and optical technologies for 3D measurement. Optical impression grows as a leader of CAI segment of almost every new CAD/CAM system. The most important properties of 3D scanners are: accuracy, volume and speed of measurement and ergonomy of instrument. .


Author(s):  
Vladimir Panchenko ◽  
Valeriy Kharchenko

This chapter discusses the simulation of solar photovoltaic thermal modules of planar and concentrator structures in computer-aided design systems KOMPAS 3D and finite element analysis ANSYS. To create photovoltaic thermal modules, a method for designing their three-dimensional models in the computer-aided design system has been developed. To study the thermal regimes of the created three-dimensional models of modules, a method has been developed for visualizing thermal processes, coolant velocity, and flow lines of a cooling agent in a finite element analysis system. As a result of calculations in the finite element analysis system using the developed method, conclusions can be drawn about the feasibility of the design created with its further editing, visualization of thermal fields, and current lines of the radiator cooling agent. As an illustration of the simulation results, a three-dimensional model of a photovoltaic thermal planar roofing panel and an optimized three-dimensional model of a photodetector of a solar concentrator photovoltaic thermal module are presented.


2012 ◽  
Vol 152-154 ◽  
pp. 1347-1352
Author(s):  
Dong Song Li ◽  
Shu Qiang Li ◽  
Bo Cai ◽  
Wei Feng ◽  
Jian Guo Liu

Objective To construct three-dimensional models of individualized femoral prosthesis by using computer-aided design and to verify whether individualized femoral prosthesis is superior to popular femoral prosthesis via simulating and contrasting mechanical study. Methods Two-dimensional images of fresh femurs were obtained by using total-length CT scanning and processed with computer edge recognition and three-dimensional contour extraction software to identify outer and inner contour of pulp cavity, extract contour data of pulp cavity and prosthesis, and construct three-dimensional models of femur and individualized femoral prosthesis. SolidWorks software was used to establish three-dimensional prosthetic models in common biological and bone cement types; moreover, bone-cement, biological, and individualized femoral prosthesis were replaced via simulating clinical surgery. Results Edge extracting was replaced by Canny operator, characterizing by stable running, credible outcome, and consistent with the primary request. Stress, femoral stress, interface stress, and primary micro-motion of individualized femoral prosthesis were significantly lower than biological and bone-cement femoral prosthesis (P Conclusion The computer-aided design is reliable to perform the assistant design of prosthesis; furthermore, biomechanical properties of the individualized femoral prosthesis are superior to those of popular femoral prosthesis.


2002 ◽  
Author(s):  
◽  
Jason David De Beer

Today's powerful computer-aided engineering (CAE) products have reached ground breaking levels of sophistication when compared with the almost archaic technology used by our predecessors. Engineers are able to develop complex three-dimensional models, or virtual prototypes, using powerful 3D modelling capabilities, and from these models, generate manufacturing drawings, motion analysis models, and even finite element models.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Andrew Johnson ◽  
Xianwen Kong ◽  
James Ritchie

The determination of workspace is an essential step in the development of parallel manipulators. By extending the virtual-chain (VC) approach to the type synthesis of parallel manipulators, this technical brief proposes a VC approach to the workspace analysis of parallel manipulators. This method is first outlined before being illustrated by the production of a three-dimensional (3D) computer-aided-design (CAD) model of a 3-RPS parallel manipulator and evaluating it for the workspace of the manipulator. Here, R, P and S denote revolute, prismatic and spherical joints respectively. The VC represents the motion capability of moving platform of a manipulator and is shown to be very useful in the production of a graphical representation of the workspace. Using this approach, the link interferences and certain transmission indices can be easily taken into consideration in determining the workspace of a parallel manipulator.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771038 ◽  
Author(s):  
Isad Saric ◽  
Adil Muminovic ◽  
Mirsad Colic ◽  
Senad Rahimic

This article presents architecture of integrated intelligent computer-aided design system for designing mechanical power-transmitting mechanisms (IICADkmps). The system has been developed in C# program environment with the aim of automatising the design process. This article presents a modern, automated approach to design. Developed kmps modules for calculation of geometrical and design characteristics of mechanical power-transmitting mechanisms are described. Three-dimensional geometrical parameter modelling of mechanical power-transmitting mechanisms was performed in the computer-aided design/computer-aided manufacturing/computer-aided engineering system CATIA V5. The connection between kmps calculation modules and CATIA V5 modelling system was established through initial three-dimensional models – templates. The outputs from the developed IICADkmps system generated final three-dimensional virtual models of mechanical power-transmitting mechanisms. Testing of the developed IICADkmps system was performed on friction, belt, cogged (spur and bevel gears) and chain transmitting mechanisms. Also, connection of the developed IICADkmps system with a device for rapid prototyping and computer numerical control machines was made for the purpose of additional testing and verification of practical use. Physical prototypes of designed characteristic elements of mechanical power-transmitting mechanisms were manufactured. The selected test three-dimensional virtual prototypes, obtained as an output from the developed IICADkmps system, were manufactured on the device for rapid prototyping (three-dimensional colour printer Spectrum Z510) and computer numerical control machines. Finally, at the end of the article, conclusions and suggested possible directions of further research, based on theoretical and practical research results, are presented.


Sign in / Sign up

Export Citation Format

Share Document