Effect of age on cardiovascular responses to static muscular contraction in beagles

1992 ◽  
Vol 73 (6) ◽  
pp. 2320-2327 ◽  
Author(s):  
G. C. Haidet

Induced muscular contraction in anesthetized animals results in significant hemodynamic and regional blood flow (RBF) changes. Although reflex cardiovascular responses initiated in contracting muscle have been firmly established, little is known about the effects of age on these responses. Because other reflex responses that involve sympathetic activation appear to be attenuated with age, it was hypothesized that reflex efferent cardiovascular responses that normally occur during muscular contraction would be impaired in senescent dogs. Therefore, hemodynamic and RBF responses to induced static hindlimb contraction (HLC) were evaluated in 8- to 14- and 2- to 3-yr-old beagles during alpha-chloralose anesthesia. Most baseline hemodynamic parameters were similar in both groups, but heart rate was significantly (P < 0.05) higher in old dogs. During HLC, heart rate and blood pressure increased in the young and old dogs. However, increases in stroke volume and cardiac output were greater in old dogs, combined with a reduction in systemic vascular resistance not observed in young dogs. No age-related difference in baseline RBF (microspheres) was observed in six of eight abdominal regional circulations and in each of four skeletal muscle groups. During HLC, RBF reductions occurred in six of eight abdominal organs in young and old dogs. However, the reduction in RBF and concomitant increase in vascular resistance in all eight abdominal regions combined was almost twice as great in young vs. old dogs. In noncontracting skeletal muscle, RBF decreased and vascular resistance increased four times more in young vs. old dogs.(ABSTRACT TRUNCATED AT 250 WORDS)

1993 ◽  
Vol 265 (6) ◽  
pp. H1899-H1908 ◽  
Author(s):  
G. C. Haidet

Aging significantly affects reflex cardiovascular (CV) responses to induced muscular contraction in anesthetized dogs. To further investigate whether age-related changes in alpha-adrenergic-mediated responses to muscular contraction contribute to these previously reported age-related changes in CV responses associated with advanced age, hemodynamic and regional blood flow (BF) responses at baseline and during hindlimb contraction (HLC) were evaluated both before and after alpha-blockade (alpha-AB) in older (8-14 yr old) and in younger (2-3 yr old) beagles during alpha-chloralose anesthesia. alpha-AB with phentolamine resulted in significant (P < 0.05) reductions in mean arterial pressure before and during HLC, regardless of age. However, age-related differences in the systemic vascular resistance, cardiac output, and stroke volume responses to HLC, observed before alpha-AB, were eliminated after phentolamine as the result of an age-related difference in each of these responses to alpha-AB. Baseline BF (microspheres) was unchanged after alpha-AB in seven of eight abdominal organs, regardless of age. However, reductions in BF during HLC were attenuated in seven of eight abdominal organs in the younger dogs after alpha-AB, but in none of these organs in the older dogs, indicative of diminished alpha-mediated vasoconstriction in these organs in the older dogs during HLC. Furthermore, the age-related difference in the combined BF reduction to all eight abdominal organs before alpha-AB was eliminated after alpha-AB. Finally, BF increases to two of four contracting muscles, as well as the combined increase in blood flow to all four contracting muscles, were attenuated after alpha-AB, regardless of age. These results demonstrate that alpha-blockade eliminates many of the age-related differences in CV responses to HLC observed before alpha-AB and suggest that alpha-adrenergic-mediated responses to HLC change with age in beagles.


1980 ◽  
Vol 239 (1) ◽  
pp. R137-R142 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

To investigate the role of the paraventricular (PAH) and supraoptic (SON) nuclei in regulation of the cardiovascular system experiments were done in 26 cats anesthetized with alpha-chloralose, paralyzed, and artificially ventilated. Electrical stimulation of histologically verified sites in the region of the PAH and SON elicited increases in arterial pressure in bilaterally vagotomized animals and increases in heart rate both in spinal (C2) animals and in animals bilaterally vagotomized, In addition, stimulation of either the PAH or SON inhibited the reflex vagal bradycardia elicited by stimulation of the carotid sinus nerve (CSN) and bilateral lesions of these areas increased the magnitude of the response. On the other hand, stimulation and lesions of these hypothalamic regions did not alter the magnitude of the cardiovascular responses to stimulation of the aortic depressor nerve. These results demonstrate that stimulation of the PAH and SON elicit cardiovascular responses due to reciprocal changes in activity of the parasympathetic and sympathetic nervous systems and that these structures maintain a tonic inhibitory influence on the heart rate component of the CSN reflex.


1988 ◽  
Vol 66 (1) ◽  
pp. 101-105 ◽  
Author(s):  
P. Kubes ◽  
C. K. Chapler ◽  
S. M. Cain

Redistribution of blood flow away from resting skeletal muscle does not occur during anemic hypoxia even when whole body oxygen uptake is not maintained. In the present study, the effects of sympathetic nerve stimulation on both skeletal muscle and hindlimb blood flow were studied prior to and during anemia in anesthetized, paralyzed, and ventilated dogs. In one series (skeletal muscle group, n = 8) paw blood flow was excluded by placing a tourniquet around the ankle; in a second series (hindlimb group, n = 8) no tourniquet was placed at the ankle. The distal end of the transected left sciatic nerve was stimulated to produce a maximal vasoconstrictor response for 4-min intervals at normal hematocrit (Hct.) and at 30 min of anemia (Hct. = 14%). Arterial blood pressure and hindlimb or muscle blood flow were measured; resistance and vascular hindrance were calculated. Nerve stimulation decreased blood flow (p < 0.05) in the hindlimb and muscle groups at normal Hct. Blood flow rose (p < 0.05) during anemia and was decreased (p < 0.05) in both groups during nerve stimulation. However, the blood flow values in both groups during nerve stimulation in anemic animals were greater (p < 0.05) than those at normal Hct. Hindlimb and muscle vascular resistance fell significantly during anemia and nerve stimulation produced a greater increase in vascular resistance at normal Hct. Vascular hindrance in muscle, but not hindlimb, was less during nerve stimulation in anemia than at normal Hct. The data indicate that (i) maximal sympathetic stimulation produced a significant decrease in both skeletal muscle and hindlimb blood flow during anemia, (ii) the reduction in blood flow in these areas was less with sympathetic stimulation during anemia than at normal Hct., and (iii) the anemic stimulus (Hct. = 14%) does not activate maximal sympathetic vasoconstrictor tone in the skeletal muscle.


1992 ◽  
Vol 263 (5) ◽  
pp. R1104-R1109 ◽  
Author(s):  
C. L. Stebbins

Peripheral vasopressin (AVP) can act centrally to sensitize the arterial baroreflex and/or peripherally to attenuate regional blood flow by a direct vascular effect. Because plasma concentrations of AVP increase during exercise, this study examined the possibility that AVP is capable of modulating the reflex cardiovascular response to static muscle contraction. Thus, in anesthetized cats, the pressor [mean arterial pressure (MAP)], myocardial contractile (dP/dt), and heart rate responses to 30-45 s of electrically induced static contraction of the hindlimb muscles were compared before and after intravenous injection of the V1 receptor antagonist d[CH2)5Tyr(Me)]-AVP (V1-x, n = 7), V1-x plus the V2 receptor antagonist [d(CH2)5,D-Phe2,Ile4,Arg8,Ala9]vasopressin (V2-x, n = 5), or the ganglionic blocker hexamethonium chloride (n = 5). In three additional cats, the contraction-induced cardiovascular response was monitored before and after injection of V1-x + V2-x and after hexamethonium. Subsequent to treatment with V1-x, the MAP and dP/dt responses to contraction were augmented by 18 +/- 5 and 22 +/- 10%, respectively (P < 0.05). After injection of V1-x + V2-x, the MAP and dP/dt responses were augmented to a similar extent (32 +/- 6 and 40 +/- 17%, respectively; P < 0.05). However, there was no difference in the magnitude of augmentation of these responses between the two conditions. The heart rate response was not altered by either treatment. Ganglionic blockade eliminated the cardiovascular responses to contraction. Last, when the pressor and contractile responses to contraction were initially augmented by administration of V1-x + V2-x, subsequent ganglionic blockade abolished the entire cardiovascular response.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 2 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Terry J. Housh ◽  
Rommie J. Hughes ◽  
Glen O. Johnson ◽  
Dona J. Housh ◽  
Loree L. Wagner ◽  
...  

The purpose of this investigation was to examine age-related differences in absolute and relative isokinetic shoulder strength of high school wrestlers. A total of 122 high school wrestlers (M age = 16.31±1.18 yrs) volunteered to be measured for arm flexion and extension strength at the shoulder joint using a Cybex II dynamometer at 30, 180, and 300°·s−1. The sample was divided into four age groups: 13.75−15.00 (n = 22), 15.08−16.00 (n = 27), 16.08−17.00 (n = 34), and 17.08−18.83 years (n = 39). The results of this study indicated significant increases in absolute and relative arm flexion and extension strength across age when covaried for BW and FFW. In addition, comparisons with previously published data indicated differences between muscle groups in the pattern of strength gains that were dependent upon the speed of muscular contraction and may have been influenced by fiber type distribution characteristics.


2019 ◽  
Vol 20 (13) ◽  
pp. 3149 ◽  
Author(s):  
Lackner ◽  
Papousek ◽  
Schmid-Zalaudek ◽  
Cervar-Zivkovic ◽  
Kolovetsiou-Kreiner ◽  
...  

Women with pregnancies complicated by preeclampsia appear to be at increased risk of metabolic and vascular diseases in later life. Previous research has also indicated disturbed cardiorespiratory adaptation during pregnancy. The aim of this study was to follow up on the physiological stress response in preeclampsia several weeks postpartum. A standardized laboratory test was used to illustrate potential deviations in the physiological stress responding to mildly stressful events of the kind and intensity in which they regularly occur in further everyday life after pregnancy. Fifteen to seventeen weeks postpartum, 35 women previously affected by preeclampsia (19 mild, 16 severe preeclampsia), 38 women after uncomplicated pregnancies, and 51 age-matched healthy controls were exposed to a self-relevant stressor in a standardized stress-reactivity protocol. Reactivity of blood pressure, heart rate, stroke index, and systemic vascular resistance index as well as baroreceptor sensitivity were analyzed. In addition, the mutual adjustment of blood pressure, heart rate, and respiration, partitioned for influences of the sympathetic and the parasympathetic branches of the autonomic nervous system, were quantified by determining their phase synchronization. Findings indicated moderately elevated blood pressure levels in the nonpathological range, reduced stroke volume, and elevated systemic vascular resistance in women previously affected by preeclampsia. Despite these moderate abnormalities, at the time of testing, women with previous preeclampsia did not differ from the other groups in their physiological response patterns to acute stress. Furthermore, no differences between early, preterm, and term preeclampsia or mild and severe preeclampsia were observed at the time of testing. The findings suggest that the overall cardiovascular responses to moderate stressors return to normal in women who experience a pregnancy with preeclampsia a few weeks after delivery, while the operating point of the arterial baroreflex is readjusted to a higher pressure. Yet, their regulation mechanisms may remain different.


1990 ◽  
Vol 68 (2) ◽  
pp. 561-567 ◽  
Author(s):  
K. C. Kregel ◽  
J. M. Overton ◽  
D. R. Seals ◽  
C. M. Tipton ◽  
L. A. Fisher

The effects of intracerebroventricular (icv) administration of a corticotropin-releasing factor (CRF) receptor antagonist, alpha-helical CRF, on systemic and regional hemodynamic adjustments to exercise were studied in conscious rats. On consecutive days, rats received saline icv, alpha-helical CRF icv, and no treatment 30 min before treadmill exercise (TMX). Increases in heart rate (HR) and mean arterial pressure (MAP) in response to TMX (16.1-28.6 m/min) were similar after icv administration of saline or no treatment. In rats receiving saline icv or no treatment, estimated vascular resistance increased in the mesenteric and renal regions and declined in the iliac (hindlimb) region. After icv administration of alpha-helical CRF9-41, HR and MAP responses during TMX were significantly attenuated. In addition, TMX-induced elevations of estimated mesenteric vascular resistance and iliac blood flow velocity were blunted after CRF receptor blockade. These altered cardiovascular and hemodynamic responses were ultimately reflected in the animals' compromised ability to run. The results suggest that the central nervous system actions of endogenous CRF are necessary for the full expression of the cardiovascular adjustments to TMX in the conscious rat.


1993 ◽  
Vol 18 (4) ◽  
pp. 331-358 ◽  
Author(s):  
Timothy J. Doherty ◽  
Anthony A. Vandervoort ◽  
William F. Brown

This review briefly summarizes the current state of knowledge regarding age related changes in skeletal muscle, followed by a more in-depth review of ageing effects on animal and human motor units (MUs). Ageing in humans is generally associated with reductions in muscle mass (atrophy), leading to reduced voluntary and electrically evoked contractile strength by the 7th decade for most muscle groups studied. As well, contraction and one-half relaxation times are typically prolonged in muscles of the elderly. Evidence from animal and human studies points toward age associated MU loss as the primary mechanism for muscle atrophy, and such losses may be greatest among the largest and fastest MUs. However, based on studies in animals and humans, it appears that at least some of the surviving MUs are able to partially compensate for MU losses, as indicated by an increase in the average MU size with age. The fact that muscles in the elderly have fewer, but on average larger and slower, MUs has important implications for motor control and function in this population. Key words: skeletal muscle, motor neuron, motor axon, contractile properties, adaptation


1994 ◽  
Vol 87 (3) ◽  
pp. 297-302 ◽  
Author(s):  
G. A. Ford ◽  
O. F. W. James

1. Cardiac chronotropic responses to isoprenaline are reduced with ageing in man. It is unclear whether this is due to reduced cardiac β-adrenergic sensitivity or to age-associated differences in reflex cardiovascular responses to the vasodilatory effects of isoprenaline. Age-associated changes in physical activity are also reported to influence β-adrenergic sensitivity. 2. The aim of the present study was to determine the contribution of alterations in reflex changes in parasympathetic and sympathetic influences and physical fitness to the age-associated reduction in cardiac chronotropic responses to β-adrenergic agonists. 3. The effect of ‘autonomic blockade’ with atropine (40 μg/kg intravenously) and clonidine (4 μg/kg intravenously) on blood pressure, heart rate and chronotropic responses to intravenous bolus isoprenaline doses was determined in eight healthy young (mean age 21 years), nine healthy elderly (72 years) and 10 endurance-trained elderly (69 years) subjects. 4. Elderly subjects had a reduced increase in heart rate after atropine (young, 49 ± 9 beats/min; elderly, 36 ± 5 beats/min; endurance-trained elderly, 34 ± 12 beats/min; P < 0.01) and did not demonstrate the transient increase in systolic blood pressure after clonidine observed in young subjects (young, 11 ± 10 mmHg; elderly, −12 ± 16 mmHg; endurance-trained elderly, −18 ± 11 mmHg; P < 0.01). 5. Cardiac chronotropic sensitivity to isoprenaline after ‘autonomic blockade’ increased in the young but decreased in the elderly subjects. The isoprenaline dose that increased heart rate by 25 beats/min before and after autonomic blockade' was: young, before 1.6 μg, after 2.8 μg, P < 0.01 (geometric mean, paired test); elderly, before 6.9 μg, after 3.6 μg, P < 0.05; endurance-trained elderly, before 5.9 μg, after 4.0 μg, P < 0.05. Cardiac chronotropic sensitivity to isoprenaline was significantly reduced in elderly compared with young subjects before (P < 0.01) but was similar after (P = 0.09) ‘autonomic blockade’. Chronotropic sensitivity did not differ between healthy and endurance-trained elderly subjects before or after ‘autonomic blockade’. 6. The age-associated reduction in cardiac chronotropic responses to bolus isoprenaline is primarily due to an age-related reduction in the influence of reflex cardiovascular responses on heart rate and not to an age-related reduction in cardiac β-adrenergic sensitivity. Endurance training is not associated with altered β-adrenergic chronotropic sensitivity in the elderly. The transient pressor response to intravenously administered clonidine may be lost in ageing man.


1991 ◽  
Vol 80 (1) ◽  
pp. 39-45 ◽  
Author(s):  
M. A. Rahman ◽  
I. Farquhar ◽  
T. Bennett

1. Cardiovascular responses to three different interventions, namely the Valsalva manoeuvre, deep breathing and a cold stimulus on the face, were studied in two ethnic groups (European and Bangladeshi) that have been shown to differ in the prevalence of hypertensive-vascular disease. The data obtained consisted of systolic blood pressure, diastolic blood pressure, mean blood pressure, heart rate measured by using a beat-by-beat non-invasive blood pressure monitor (the Finapres), forearm blood flow determined by venous occlusion plethysmography, and calculated forearm vascular resistance. 2. The resting haemodynamic status was similar in European and Bangladeshi subjects. However, Bangladeshi subjects showed a greater increase in heart rate, but only after 20 s into the Valsalva manoeuvre, and greater overshoots in mean blood pressure after the manoeuvre than the European subjects. Furthermore, after cold face stimulation the fall in forearm vascular resistance to baseline levels was delayed in Bangladeshi subjects relative to that in the European subjects. 3. There were no inter-group differences in the reflex bradycardia relative to mean blood pressure or in the cardiac baroreflex sensitivity estimated from systolic blood pressure and pulse interval after the Valsalva manoeuvre. In addition, values for the mean difference between maximum and minimum pulse intervals during deep breathing did not differ in Bangladeshi and European subjects. 4. These findings together suggest that, although cardiac vagal reflex responses appear similar in the two groups, sympatho-adrenal influences on the heart and vasculature may be greater in Bangladeshi subjects than in European subjects.


Sign in / Sign up

Export Citation Format

Share Document