IL-1 beta and IL-6 induce hyperplasia and hypertrophy of cultured guinea pig airway smooth muscle cells

1995 ◽  
Vol 78 (4) ◽  
pp. 1555-1563 ◽  
Author(s):  
S. De ◽  
E. T. Zelazny ◽  
J. F. Souhrada ◽  
M. Souhrada

Guinea pig airway smooth muscle (ASM) cells were maintained in a primary tissue culture (passages 1–3). Cells were exposed to human recombinant interleukin-1 beta (IL-1 beta; 20–100 pg/ml) or interleukin-6 (IL-6; 1–4 ng/ml) in the presence of indomethacin (1 microgram/ml) for up to 5 days. Proliferation of ASM cells was assessed with two techniques, direct counting of cells with a hemacytometer and [3H]thymidine incorporation corrected for total protein content. Hypertrophy of ASM cells was assessed by [3H]leucine incorporation (evaluation of protein synthesis), determination of total DNA content, DNA content per cell, and protein content per cell. We observed that the exposure of ASM cells to human recombinant IL-1 beta or IL-6, in all studied concentrations, significantly increased the number of cells as well as [3H]thymidine incorporation into ASM cells. We also found that exposure of ASM to these two cytokines increased [3H]leucine incorporation into the ASM cells and increased protein content and DNA content per single cell. These changes were also concentration dependent. We conclude that the two proinflammatory cytokines, IL-1 beta and IL-6, which are present in asthmatic lungs, increased the proliferation of ASM cells (hyperplasia) as well as their overall size and size of their nuclei, as measured by biochemical markers. These findings are compatible with the presence of ASM hypertrophy.

1995 ◽  
Vol 268 (6) ◽  
pp. L1047-L1051 ◽  
Author(s):  
K. Maruno ◽  
A. Absood ◽  
S. I. Said

Airway smooth muscle (ASM) cell proliferation contributes to increased airway resistance in bronchial asthma. We have examined the modulation of ASM proliferation by vasoactive intestinal peptide (VIP), a cotransmitter of airway relaxation. Human ASM cells were grown in culture as a monolayer. VIP (1.0 nM-1.0 microM) inhibited proliferation in a dose-dependent manner by up to 82% on day 2, but the related peptide glucagon had no effect. Histamine (100 nM-100 microM) increased cell counts by 66%, but in the presence of VIP, cell counts and [3H]thymidine incorporation were reduced by up to 55%. Adenosine 3',5'-cyclic monophosphate (cAMP)-promoting agents, including 3-isobutyl-1-methylxanthine, forskolin, and 8-bromo-adenosine 3',5'-cyclic monophosphate, alone and especially combined with VIP, reduced cell counts and [3H]thymidine incorporation, in correlation with cAMP levels. KT-5720 (1.0 nM-1.0 microM), a selective inhibitor of cAMP-dependent protein kinase A (PKA), abolished the inhibitory effect of VIP. The results show that VIP selectively and potently inhibits human ASM cell growth and multiplication, and nullifies the mitogenic effect of histamine, by a PKA-mediated mechanism. A deficiency of VIP may lead to ASM hyperplasia due to unopposed stimulation by endogenous mitogens.


1996 ◽  
Vol 271 (6) ◽  
pp. L910-L917 ◽  
Author(s):  
P. N. Black ◽  
P. G. Young ◽  
S. J. Skinner

Transforming growth factor-beta (TGF-beta) is formed in the airways and may have a role in airway remodeling in asthma. We have studied the effects of TGF-beta on bovine airway smooth muscle cells (BASMC) in vitro. Thymidine incorporation by BASMC was inhibited after a 24-h incubation with TGF-beta 1. In contrast, thymidine incorporation by BASMC was stimulated (35.1 +/- 11.2%) after a 48-h incubation with 1 ng/ml TGF-beta 1. Cell number was also increased (25.9 +/- 7.6%) after a 72-h incubation with 3 ng/ml TGF-beta 1. TGF-beta 1 also increased cell size at 72 h, with a 24.3 +/- 6.2% increase in cell, diameter. Increases in BASMC size were accompanied by increased [3H]proline incorporation into cell protein. In cells from any individual animal, there was a strong inverse correlation (r = -0.97) between changes in cell number and cell size. In cells from some animals, the main effect of TGF-beta 1 was to promote an increase in cell number, whereas in others the predominant effect was cell hypertrophy. In contrast epidermal growth factor (EGF) led to an increase in thymidine incorporation and cell number in all preparations but did not increase cell size. TGF-beta 1 also promoted secretion of glycosaminoglycans into culture medium by BASMC with a preferential increase in hyaluronan secretion (4.5-fold) after 24 h. Latent TGF-beta (0.89 +/- 0.06 ng/ml) was also detected in conditioned medium from cultured BASMC, and TGF-beta 1 expression was demonstrated with RNA extracts from BASMC. Varying degrees of both smooth muscle cell hypertrophy and hyperplasia occur in asthma. These results obtained with airway smooth muscle cells indicate that TGF-beta could play a role in the structural changes seen in asthma.


2002 ◽  
Vol 364 (3) ◽  
pp. 641-648 ◽  
Author(s):  
Hwei Ling ONG ◽  
Jinglong CHEN ◽  
Tim CHATAWAY ◽  
Helen BRERETON ◽  
Lei ZHANG ◽  
...  

Although there are numerous reports of the presence of mRNA encoding the transient receptor potential (TRP)-1 protein in animal cells and of the detection of the heterologously expressed TRP-1 protein by Western-blot analysis, it has proved difficult to unequivocally detect endogenous TRP-1 proteins. A combination of immunoprecipitation and Western-blot techniques, employing a polyclonal antibody and a monoclonal antibody respectively, was developed. Using this technique, a band of approx. 80kDa was detected in extracts of H4-IIE rat liver hepatoma cell line and guinea-pig airway smooth muscle (ASM) cells transfected with human TRPC-1 cDNA. In extracts of untransfected H4-IIE cells, ASM cells, rat brain and guinea-pig brain, a band of approx. 92kDa was detected. Reverse transcriptase PCR experiments detected cDNA encoding both the α- and β-isoforms of TRP-1 in H4-IIE cells. Treatment of protein extracts with peptide N-glycosidase F indicated that the 92kDa band represents an N-glycosylated protein. Western blots conducted with a commercial polyclonal anti-(TRP-1) antibody (Alm) detected a band of 120kDa in extracts of H4-IIE cells and guinea-pig ASM cells. A combination of immunoprecipitation and Western-blotting techniques with the Alm antibody did not detect any bands at 92kDa or 120kDa in extracts of H4-IIE and ASM cells. It is concluded that (a) the 92-kDa band detected in untransfected H4-IIE and ASM cells corresponds to the N-glycosylated β-isoform of endogenous TRP-1, (b) the combined immunoprecipitation and Western-blot approach, employing two different antibodies, provides a reliable and specific procedure for detecting endogenous TRP-1 proteins, and (c) that caution is required in developing and utilizing anti-(TRP-1) antibodies.


1996 ◽  
Vol 270 (5) ◽  
pp. L795-L802 ◽  
Author(s):  
S. De ◽  
E. T. Zelazny ◽  
J. F. Souhrada ◽  
M. Souhrada

The primary culture of confluent human airway smooth muscle (ASM) cells were exposed up to 5 days to human recombinant interleukin (IL)-1 beta in the presence of indomethacin and 1% fetal bovine serum. The proliferation was assessed by a [3H]thymidine incorporation and direct cell count. We found that IL-1 beta significantly increased thymidine incorporation into and cell count of ASM cells in a concentration-dependent manner. Pretreatment of cells with specific polyclonal antibodies against platelet-derived growth factor (PDGF-BB homodimer) completely inhibited the IL-1 beta-induced increase in thymidine incorporation. The PDGF-BB, at the concentrations of 1.5 and 2.5 ng/ml, stimulated the proliferation of ASM cells. The proliferation action of IL-1 beta was potentiated when PDGF-BB was added into the medium in combination with IL-1 beta. Pretreatment of cells with genistein (0.37 microM), a specific tyrosine kinase inhibitor, attenuated the proliferative effect of IL-1 beta and PDGF-BB. To clarify whether these growth stimuli (IL-1 beta and PDGF-BB) activated phospholipase C (PLC), we examined the formation of phosphatidylinositols. We observed that both agents significantly increased phosphoinositide turnover. In contrast, genistein pretreatment (0.37 microM) prevented formation of inositol 1,4,5-trisphosphate (IP3), as induced by IL-1 beta and/or PDGF-BB. This study demonstrates that both IL-1 beta and PDGF-BB could induce proliferation of ASM cells through the activation of tyrosine kinase and PLC, which in turn stimulate the formation of IP3, a second messenger molecule.


2008 ◽  
Vol 295 (6) ◽  
pp. L1040-L1047 ◽  
Author(s):  
George Gallos ◽  
Neil R. Gleason ◽  
Yi Zhang ◽  
Sang-Woo Pak ◽  
J. R. Sonett ◽  
...  

Reactive airway disease predisposes patients to episodes of acute smooth muscle mediated bronchoconstriction. We have for the first time recently demonstrated the expression and function of endogenous ionotropic GABAA channels on airway smooth muscle cells. We questioned whether endogenous GABAA channels on airway smooth muscle could augment β-agonist-mediated relaxation. Guinea pig tracheal rings or human bronchial airway smooth muscles were equilibrated in organ baths with continuous digital tension recordings. After pretreatment with or without the selective GABAA antagonist gabazine (100 μM), airway muscle was contracted with acetylcholine or β-ala neurokinin A, followed by relaxation induced by cumulatively increasing concentrations of isoproterenol (1 nM to 1 μM) in the absence or presence of the selective GABAA agonist muscimol (10–100 μM). In separate experiments, guinea pig tracheal rings were pretreated with the large conductance KCa channel blocker iberiotoxin (100 nM) after an EC50 contraction with acetylcholine but before cumulatively increasing concentrations of isoproterenol (1 nM to 1 uM) in the absence or presence of muscimol (100 uM). GABAA activation potentiated the relaxant effects of isoproterenol after an acetylcholine or tachykinin-induced contraction in guinea pig tracheal rings or an acetylcholine-induced contraction in human endobronchial smooth muscle. This muscimol-induced potentiation of relaxation was abolished by gabazine pretreatment but persisted after blockade of the maxi KCa channel. Selective activation of endogenous GABAA receptors significantly augments β-agonist-mediated relaxation of guinea pig and human airway smooth muscle, which may have important therapeutic implications for patients in severe bronchospasm.


1994 ◽  
Vol 72 (6) ◽  
pp. 705-710 ◽  
Author(s):  
Luke J. Janssen ◽  
Stephen M. Sims

Substance P (SP) causes bronchoconstriction, but its effects on airway smooth muscle ion conductances are unknown. We investigated the effects of SP on single smooth muscle cells dissociated from guinea-pig trachealis. Under voltage clamp at −60 mV, SP evoked reversible contractions and inward current (ISP). ISP had a latency of approximately 1 s, reached a peak of 1039 ± 147 pA (n = 19) about 2 s after onset of application, and declined to baseline levels over the next 5–10 s. At more positive holding potentials (−25 and 0 mV), the inward current was decreased in magnitude and preceded by outward current. With 140 mM K+ in the electrode and Cl− equilibrium potential (ECl) of about 0 mV, ISP was outwardly rectifying and reversed at −11 ± 2 mV. When K+ currents were blocked using Cs+, the current–voltage relationship for ISP was linear and reversed at 3 ± 1 mV. The reversal potential was dependent on the Cl− gradient across the membrane. These results suggest that SP caused a transient activation of Cl− and K+ conductances. Following the initial transient inward current, SP caused a prolonged suppression of spontaneously active K+ currents. The findings that SP evoked contractions during voltage clamp at potentials at which voltage-dependent Ca2+ channels are not active, and that current oscillations were also evoked by SP, suggest that SP is acting through release of Ca2+ from internal stores. Furthermore, SP occluded the inward current evoked by acetylcholine, suggesting that the peptidergic and cholinergic signalling pathways converge. We conclude that SP releases Ca2+ from internal stores in guinea-pig airway smooth muscle cells, leading to activation of Cl− and K+ conductances, depolarization, and contraction.Key words: Ca2+-dependent conductances, spontaneous transient outward currents, acetylcholine.


2013 ◽  
Vol 304 (3) ◽  
pp. L191-L197 ◽  
Author(s):  
George Gallos ◽  
Elizabeth Townsend ◽  
Peter Yim ◽  
Laszlo Virag ◽  
Yi Zhang ◽  
...  

Chronic obstructive pulmonary disease and asthma are characterized by hyperreactive airway responses that predispose patients to episodes of acute airway constriction. Recent studies suggest a complex paradigm of GABAergic signaling in airways that involves GABA-mediated relaxation of airway smooth muscle. However, the cellular source of airway GABA and mechanisms regulating its release remain unknown. We questioned whether epithelium is a major source of GABA in the airway and whether the absence of epithelium-derived GABA contributes to greater airway smooth muscle force. Messenger RNA encoding glutamic acid decarboxylase (GAD) 65/67 was quantitatively measured in human airway epithelium and smooth muscle. HPLC quantified GABA levels in guinea pig tracheal ring segments under basal or stimulated conditions with or without epithelium. The role of endogenous GABA in the maintenance of an acetylcholine contraction in human airway and guinea pig airway smooth muscle was assessed in organ baths. A 37.5-fold greater amount of mRNA encoding GAD 67 was detected in human epithelium vs. airway smooth muscle cells. HPLC confirmed that guinea pig airways with intact epithelium have a higher constitutive elution of GABA under basal or KCl-depolarized conditions compared with epithelium-denuded airway rings. Inhibition of GABA transporters significantly suppressed KCl-mediated release of GABA from epithelium-intact airways, but tetrodotoxin was without effect. The presence of intact epithelium had a significant GABAergic-mediated prorelaxant effect on the maintenance of contractile tone. Airway epithelium is a predominant cellular source of endogenous GABA in the airway and contributes significant prorelaxant GABA effects on airway smooth muscle force.


Sign in / Sign up

Export Citation Format

Share Document