Pulmonary vascular impedance response to hypoxia in dogs and minipigs: effects of inhaled nitric oxide

1995 ◽  
Vol 79 (4) ◽  
pp. 1156-1162 ◽  
Author(s):  
M. Maggiorini ◽  
S. Brimioulle ◽  
D. De Canniere ◽  
M. Delcroix ◽  
P. Wauthy ◽  
...  

The pig has been reported to present with a stronger hypoxic pulmonary vasoconstriction (HPV) than many other species, including dogs. We investigated [pulmonary arterial pressure (Ppa)-pulmonary arterial occluded pressure (Ppao)] vs. pulmonary blood flow (Q) relationships and pulmonary vascular impedance (PVZ) spectra in nine minipigs and nine weight-matched dogs. The animals were anesthetized and ventilated in hyperoxia [inspired O2 fraction 0.4] or hypoxia (inspired O2 fraction 0.12). PVZ was computed from the Fourier series for Ppa and Q. In hyperoxia, the pigs had a higher Ppa (26 +/- 1 vs. 16 +/- 1 mmHg), a higher first-harmonic impedance (Z1), and a more negative low-frequency phase angle but no different characteristic impedance (Zc) compared with the dogs at the same Q. Hypoxia in the dogs increased (Ppa-Ppao) at all levels of Q studied by an average of 2 mmHg but did not affect Z1 or Zc. Hypoxia in the pigs increased (Ppa-Ppao) at all levels of Q by an average of 13 mmHg and increased Z1 and Zc. Inhaled NO (150 ppm) reversed the hypoxia-induced changes in (Ppa-Ppao)/Q plots and PVZ in the dogs and pigs. However, differences in (Ppa-Ppao)/Q plots and PVZ between the dogs and pigs in hyperoxia and hypoxia were not affected by inhaled NO. We conclude 1) that minipigs present with an elevated pulmonary vascular resistance and impedance in hypoxia more than in hyperoxia and 2) that baseline differences in pulmonary hemodynamics between dogs and minipigs are structural rather than functional.

1991 ◽  
Vol 70 (4) ◽  
pp. 1867-1873 ◽  
Author(s):  
P. Lejeune ◽  
J. L. Vachiery ◽  
J. M. De Smet ◽  
M. Leeman ◽  
S. Brimioulle ◽  
...  

The effects of an increase in alveolar pressure on hypoxic pulmonary vasoconstriction (HPV) have been reported variably. We therefore studied the effects of positive end-expiratory pressure (PEEP) on pulmonary hemodynamics in 13 pentobarbital-anesthetized dogs ventilated alternately in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). In this intact animal model, HPV was defined as the gradient between hypoxic and hyperoxic transmural (tm) mean pulmonary arterial pressure [Ppa(tm)] at any level of cardiac index (Q). Ppa(tm)/Q plots were constructed with mean transmural left atrial pressure [Pla(tm)] kept constant at approximately 6 mmHg (n = 5 dogs), and Ppa(tm)/PEEP plots were constructed with Q kept constant approximately 2.8 l.min-1.m-2 and Pla(tm) kept constant approximately 8 mmHg (n = 8 dogs). Q was manipulated using a femoral arteriovenous bypass and a balloon catheter in the inferior vena cava. Pla(tm) was held constant by a balloon catheter placed by left thoracotomy in the left atrium. Increasing PEEP, from 0 to 12 Torr by 2-Torr increments, at constant Q and Pla(tm), increased Ppa(tm) from 14 +/- 1 (SE) to 19 +/- 1 mmHg in hyperoxia but did not affect Ppa(tm) (from 22 +/- 2 to 23 +/- 1 mmHg) in hypoxia. Both hypoxia and PEEP, at constant Pla(tm), increased Ppa(tm) over the whole range of Q studied, from 1 to 5 l/min, but more at the highest than at the lowest Q and without change in extrapolated pressure intercepts. Adding PEEP to hypoxia did not affect Ppa(tm) at all levels of Q.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 64 (6) ◽  
pp. 2538-2543 ◽  
Author(s):  
A. J. Lonigro ◽  
R. S. Sprague ◽  
A. H. Stephenson ◽  
T. E. Dahms

Leukotrienes C4 and D4 have been implicated as possible mediators of hypoxic pulmonary vasoconstriction. To test this hypothesis, the relationship between pulmonary leukotriene (LT) synthesis in response to hypoxia and alterations in pulmonary hemodynamics was evaluated in pentobarbital sodium-anesthetized, neuromuscular-blocked, male, mongrel dogs. A reduction in the fraction of inspired O2 (FIO2) in vehicle-treated animals (n = 12) from 0.21 to 0.10 was associated with increases in LTC4 and LTD4 in bronchoalveolar lavage fluid (BALF). After 30 min of continuous hypoxia, LTC4 and LTD4 increased from control values of 59.4 +/- 10.4 and 91.7 +/- 18.1 ng/lavage to 142.7 +/- 31.8 (P less than 0.05) and 156.3 +/- 25.3 (P less than 0.01) ng/lavage, respectively. Concomitantly, mean pulmonary arterial pressure (Ppa) and pulmonary vascular resistance (PVR) were increased over control by 67 +/- 7 (P less than 0.001) and 62 +/- 7% (P less than 0.001), respectively. In contrast, in animals treated with diethylcarbamazine (n = 5), a leukotriene A4 synthase inhibitor, identical reductions in FIO2 were not associated with increases in LTC4 and LTD4 in BALF, although at the same time period, Ppa and PVR were increased over control by 60 +/- 13 (P less than 0.05) and 112 +/- 31% (P less than 0.05), respectively. These results, therefore, do not support the contention that leukotrienes mediate hypoxic pulmonary vasoconstriction in dogs.


2006 ◽  
Vol 101 (4) ◽  
pp. 1085-1090 ◽  
Author(s):  
Pierre Fesler ◽  
Alberto Pagnamenta ◽  
Benoit Rondelet ◽  
François Kerbaul ◽  
Robert Naeije

Sildenafil has been shown to be an effective treatment of pulmonary arterial hypertension and is believed to present with pulmonary selectivity. This study was designed to determine the site of action of sildenafil compared with inhaled nitric oxide (NO) and intravenous sodium nitroprusside (SNP), known as selective and nonselective pulmonary vasodilators, respectively. Inhaled NO (40 ppm), and maximum tolerated doses of intravenous SNP and sildenafil, (5 μg·kg−1·min−1 and 0.1 mg·kg−1·h−1), respectively, were administered to eight dogs ventilated in hypoxia. Pulmonary vascular resistance (PVR) was evaluated by pulmonary arterial pressure (Ppa) minus left atrial pressure (Pla) vs. flow curves, and partitioned into arterial and venous segments by the occlusion method. Right ventricular hydraulic load was defined by pulmonary arterial characteristic impedance (Zc) and elastance (Ea) calculations. Right ventricular arterial coupling was estimated by the ratio of end-systolic elastance (Ees) to Ea. Decreasing the inspired oxygen fraction from 0.4 to 0.1 increased Ppa − Pla at a standardized flow of 3 l·min−1·m−2 from 6 ± 1 to 18 ± 1 mmHg (mean ± SE). Ppa − Pla was decreased to 9 ± 1 by inhaled NO, 14 ± 1 by SNP, and 14 ± 1 mmHg by sildenafil. The partition of PVR, Zc, Ea, and Ees/Ea was not affected by the three interventions. Inhaled NO did not affect systemic arterial pressure, which was similarly decreased by sildenafil and SNP, from 115 ± 4 to 101 ± 4 and 98 ± 5 mmHg, respectively. We conclude that inhaled NO inhibits hypoxic pulmonary vasoconstriction more effectively than sildenafil or SNP, and sildenafil shows no more selectivity for the pulmonary circulation than SNP.


1993 ◽  
Vol 74 (5) ◽  
pp. 2188-2193 ◽  
Author(s):  
P. Ewalenko ◽  
C. Stefanidis ◽  
A. Holoye ◽  
S. Brimioulle ◽  
R. Naeije

The pulmonary vascular effects of inhaled anesthetics have been reported variably. We compared the effects of intravenous anesthesia (propofol) and inhalational anesthesia (isoflurane) on multipoint mean [pulmonary arterial pressure (Ppa)-pulmonary arterial occluded pressure (PpaO)]/cardiac output (Q) plots and on pulmonary vascular impedance (PVZ) spectra in eight dogs alternatively ventilated in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). Q was altered by a manipulation of venous return. During propofol, hypoxia increased (Ppa-PpaO) by an average of 2–3 mmHg over the entire range of Q studied, from 1 to 2.5 l.min-1 x m-2. This hypoxic pulmonary vasoconstriction (HPV) was associated with insignificant changes in PVZ. Decreasing Q in hypoxia and hyperoxia did not affect PVZ. Compared with propofol, isoflurane decreased (Ppa-PpaO) by an average of 2–5 mmHg at all levels of Q studied in both hypoxia and hyperoxia but did not affect HPV. During isoflurane anesthesia, 0 Hz PVZ was lower (P < 0.01) in hypoxia, but otherwise the PVZ spectrum was not different from that recorded during propofol anesthesia. We conclude that, in dogs, 1 degree general anesthesia with isoflurane alone decreases pulmonary vascular tone without inhibition of HPV and that 2 degrees pressure/Q plots in the time domain are more sensitive than those in the frequency domain to subtle hemodynamic changes induced by hypoxia or isoflurane at the periphery of the pulmonary vasculature.


1996 ◽  
Vol 80 (4) ◽  
pp. 1240-1248 ◽  
Author(s):  
M. Delcroix ◽  
C. Melot ◽  
F. Vermeulen ◽  
R. Naeije

Hypoxic pulmonary vasoconstriction (HPV) is inhibited in several models of acute lung injury. Whether HPV is preserved in pulmonary embolism is unknown. We investigated the effects of a reduction in the fraction of inspired O2 (FIO2) on pulmonary hemodynamics and gas exchange in anesthetized dogs before and after autologous blood clot pulmonary embolism. In a first group of 14 dogs, stimulus-response curves for HPV were constructed as pulmonary arterial pressure (Ppa) vs. FIO2 varied between 1.0 and 0.06 at a cardiac output (Q) kept constant at 3.5 l.min-1.m-2. Gas exchange was evaluated by using the multiple inert-gas elimination technique at FIO2 of 1.0, 0.4, and 0.1. Embolism decreased the relative magnitude of HPV, expressed as the gradient between Ppa and pulmonary arterial occluded pressure in hypoxia divided by (Ppa-pulmonary arterial occluded pressure) at FIO2 of 1.0, from 1.8 to 1.2 (P < 0.05). Retention minus excretion gradients for sulfur hexafluoride and ethane were increased by decreased FIO2 (P < 0.005 and P < 0.05, respectively) before but not after embolism. Hypoxia-induced deterioration in gas exchange before embolism was related to the amount of baseline very low ventilation-perfusion (VA/Q) ratios. Similar results were obtained in a second group of seven dogs with Q decreased to maintain Ppa at the same average value as before embolism. However, gas exchange was not affected by inspiratory hypoxia before as well as after embolism in this group, which presented with a lesser amount of baseline very low VA/Q. In both groups of dogs, increase in the FIO2 from 0.4 to 1.0 did not affect gas exchange. We conclude that 1) pulmonary embolism is associated with a partial inhibition of HPV, 2) HPV does not contribute to preserve gas exchange in pulmonary embolism, and 3) a strong HPV may deteriorate gas exchange in severe hypoxia in the presence of minor very low VA/Q inequality.


1996 ◽  
Vol 8 (3) ◽  
pp. 431 ◽  
Author(s):  
V DeMarco ◽  
JW Skimming ◽  
TM Ellis ◽  
S Cassin

Others have shown that inhaled nitric oxide causes reversal of pulmonary hypertension in anaesthetized perinatal sheep. The present study examined haemodynamic responses to inhaled NO in the normal and constricted pulmonary circulation of unanaesthetized newborn lambs. Three experiments were conducted on each of 7 lambs. First, to determine a minimum concentration of NO which could reverse acute pulmonary hypertension caused by infusion of the thromboxame mimic U46619, the haemodynamic effects of 5 different doses of inhaled NO were examined. Second, the effects of inhaling 80 ppm NO during hypoxic pulmonary vasoconstriction were examined. Finally, to determine if tachyphalaxis occurs during NO inhalation, lambs were exposed to 80 ppm NO for 3 h during which time pulmonary arterial pressure was doubled by infusion of U46619. Breathing NO (80 ppm) caused a slight but significant decrease in pulmonary vascular resistance (PVR) in lambs with normal pulmonary arterial pressure (PAP). Nitric oxide, inhaled at concentrations between 10 and 80 ppm for 6 min (F1O2 = 0.60), caused decreases in PVR when PAP was elevated with U46619. Nitric oxide acted selectively on the pulmonary circulation, i.e. no changes occurred in systemic arterial pressure or any other measured variable. Breathing 80 ppm NO for 6 min reversed hypoxic pulmonary vasoconstriction. In the chronic exposure study, inhaling 80 ppm NO for 3 h completely reversed U46619-induced pulmonary hypertension. Although arterial methaemoglobin increased during the 3-h exposure to 80 ppm NO, there was no indication that this concentration of NO impairs oxygen loading. These data demonstrate that NO, at concentrations as low as 10 ppm, is a potent, rapid-action, and selective pulmonary vasodilator in unanaesthetized newborn lambs with elevated pulmonary tone. Furthermore, these data support the use of inhaled NO for treatment of infants with pulmonary hypertension.


2011 ◽  
Vol 110 (1) ◽  
pp. 188-198 ◽  
Author(s):  
Rebecca R. Vanderpool ◽  
Ah Ram Kim ◽  
Robert Molthen ◽  
Naomi C. Chesler

Hypoxic pulmonary hypertension (HPH) is initially a disease of the small pulmonary arteries. Its severity is usually quantified by pulmonary vascular resistance (PVR). Acute Rho kinase inhibition has been found to reduce PVR toward control values in animal models, suggesting that persistent pulmonary vasoconstriction is the dominant mechanism for increased PVR. However, HPH may also cause proximal arterial changes, which are relevant to right ventricular (RV) afterload. RV afterload can be quantified by pulmonary vascular impedance, which is obtained via spectral analysis of pulsatile pressure-flow relationships. To determine the effects of HPH independent of persistent pulmonary vasoconstriction in proximal and distal arteries, we quantified pulsatile pressure-flow relationships before and after acute Rho kinase inhibition and measured pulmonary arterial structure with microcomputed tomography. In control lungs, Rho kinase inhibition decreased 0 Hz impedance (Z0), which is equivalent to PVR, from 2.1 ± 0.4 to 1.5 ± 0.2 mmHg·min·ml−1 ( P < 0.05) and tended to increase characteristic impedance (ZC) from 0.21 ± 0.01 to 0.22 ± 0.01 mmHg·min·ml−1. In HPH lungs, Rho kinase inhibition decreased Z0 ( P < 0.05) without affecting ZC. Microcomputed tomography measurements performed on lungs after acute Rho kinase inhibition demonstrated that HPH significantly decreased the unstressed diameter of the main pulmonary artery (760 ± 60 vs. 650 ± 80 μm; P < 0.05), decreased right pulmonary artery compliance, and reduced the frequency of arteries of diameter 50–100 μm (both P < 0.05). These results demonstrate that acute Rho kinase inhibition reverses many but not all HPH-induced changes in distal pulmonary arteries but does not affect HPH-induced changes in the conduit arteries that impact RV afterload.


2005 ◽  
Vol 289 (1) ◽  
pp. L5-L13 ◽  
Author(s):  
Letitia Weigand ◽  
Joshua Foxson ◽  
Jian Wang ◽  
Larissa A. Shimoda ◽  
J. T. Sylvester

Previous studies indicated that acute hypoxia increased intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, and capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCC) in smooth muscle cells from distal pulmonary arteries (PASMC), which are thought to be a major locus of hypoxic pulmonary vasoconstriction (HPV). Moreover, these effects were blocked by Ca2+-free conditions and antagonists of SOCC and nonselective cation channels (NSCC). To test the hypothesis that in vivo HPV requires CCE, we measured the effects of SOCC/NSCC antagonists (SKF-96365, NiCl2, and LaCl3) on pulmonary arterial pressor responses to 2% O2 and high-KCl concentrations in isolated rat lungs. At concentrations that blocked CCE and [Ca2+]i responses to hypoxia in PASMC, SKF-96365 and NiCl2 prevented and reversed HPV but did not alter pressor responses to KCl. At 10 μM, LaCl3 had similar effects, but higher concentrations (30 and 100 μM) caused vasoconstriction during normoxia and potentiated HPV, indicating actions other than SOCC blockade. Ca2+-free perfusate and the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine were potent inhibitors of pressor responses to both hypoxia and KCl. We conclude that HPV required influx of Ca2+ through both SOCC and VOCC. This dual requirement and virtual abolition of HPV by either SOCC or VOCC antagonists suggests that neither channel provided enough Ca2+ on its own to trigger PASMC contraction and/or that during hypoxia, SOCC-dependent depolarization caused secondary activation of VOCC.


1993 ◽  
Vol 74 (3) ◽  
pp. 1061-1065 ◽  
Author(s):  
L. Zhao ◽  
D. E. Crawley ◽  
J. M. Hughes ◽  
T. W. Evans ◽  
R. J. Winter

We have investigated the role of endothelium-derived relaxing factor in modulating hypoxic pulmonary vasoconstriction by inhibiting its synthesis with the false substrate NG-monomethyl-L-arginine (L-NMMA) in the isolated blood-perfused lungs of Wistar rats after chronic hypoxia (CH, fractional inspiratory O2 concentration 10%) for 15 h, 2 days, and 7 days. Lungs were perfused with blood of normal hematocrit at constant flow (18 ml/min) ventilated with 1) 95% air-5% CO2 (normoxia) and 2) 2% O2–5% CO2-93% N2 (hypoxia) and were studied in the absence and presence of L-NMMA (30 and 300 microM) or L-arginine (L-Arg, 1 and 6 mM) in separate groups. Pulmonary arterial pressure (Ppa) rose incrementally with hypoxic exposure (all P < 0.05 vs. normoxic control group). Hypoxic pulmonary vasoconstriction (HPV) was markedly reduced after 15 h and 2 days of CH: the mean increases in Ppa (delta Ppa) in hypoxia were 15.3, 3.5, 3.8, and 13.6 mmHg in control rats and rats exposed to 15 h (P < 0.05 vs. control and 7 days of CH), 2 days (P < 0.001 vs. control and 7 days of CH), and 7 days of CH, respectively. Ppa in control rats and rats exposed to 15 h, 2 days, and 7 days of CH were 137, 179, 184, and 166% of control, respectively, after 30 microM L-NMMA (all P < 0.05 when expressed as percent change vs. no L-NMMA). Similar augmentation in HPV was seen after 30 microM L-NMMA, with all hypoxic groups having a greater response than control groups.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document