Muscle glycogen accumulation after a marathon: roles of fiber type and pro- and macroglycogen

1999 ◽  
Vol 86 (2) ◽  
pp. 474-478 ◽  
Author(s):  
Sven Asp ◽  
Jens R. Daugaard ◽  
Thomas Rohde ◽  
Kristi Adamo ◽  
Terry Graham

Muscle glycogen remains subnormal several days after muscle damaging exercise. The aims of this study were to investigate how muscle acid-soluble macroglycogen (MG) and acid-insoluble proglycogen (PG) pools are restored after a competitive marathon and also to determine whether glycogen accumulates differently in the various muscle fiber types. Six well-trained marathon runners participated in the study, and muscle biopsies were obtained from the vastus lateralis of the quadriceps muscle before, immediately after, and 1, 2, and 7 days ( days 1, 2, and 7, respectively) after the marathon. During the race, 56 ± 3.8% of muscle glycogen was utilized, and a greater fraction of MG (72 ± 3.7%) was utilized compared with PG (34 ± 6.5%). On day 2, muscle glycogen and MG values remained lower than prerace values, despite a carbohydrate-rich diet, but they had both returned to prerace levels on day 7. The PG concentration was lower on day 1 compared with before the race, whereas there were no significant differences between the prerace PG concentration and the concentrations on days 2 and 7. On day 2 the glycogen concentration was particularly low in the type I fibers, indicating that local processes are important for the accumulation pattern. We conclude that a greater fraction of human muscle MG than of PG is utilized during a marathon and that accumulation of MG is particularly delayed after the prolonged exercise bout. Furthermore, factors produced locally appear important for the glycogen accumulation pattern.

1996 ◽  
Vol 80 (3) ◽  
pp. 1061-1064 ◽  
Author(s):  
D. Constantin-Teodosiu ◽  
S. Howell ◽  
P. L. Greenhaff

The effect of prolonged exhaustive exercise on free carnitine and acetylcarnitine concentrations in mixed-fiber skeletal muscle and in type I and II muscle fibers was investigated in humans. Needle biopsy samples were obtained from the vastus lateralis of six subjects immediately after exhaustive one-legged cycling at approximately 75% of maximal O2 uptake from both the exercised and nonexercised (control) legs. In the resting (control) leg, there was no difference in the free carnitine concentration between type I and II fibers (20.36 +/- 1.25 and 20.51 +/- 1.16 mmol/kg dry muscle, respectively) despite the greater potential for fat oxidation in type I fibers. However, the acetylcarnitine concentration was slightly greater in type I fibers (P < 0.01). During exercise, acetylcarnitine accumulation occurred in both muscle fiber types, but accumulation was greatest in type I fibers (P < 0.005). Correspondingly, the concentration of free carnitine was significantly lower in type I fibers at the end of exercise (P < 0.001). The sum of free carnitine and acetylcarnitine concentrations in type I and II fibers at rest was similar and was unchanged by exercise. In conclusion, the findings of the present study support the suggestion that carnitine buffers excess acetyl group formation during exercise and that this occurs in both type I and II fibers. However, the greater accumulation of acetylcarnitine in type I fibers during prolonged exercise probably reflects the greater mitochondrial content of this fiber type.


1999 ◽  
Vol 276 (2) ◽  
pp. R591-R596 ◽  
Author(s):  
H. Green ◽  
C. Goreham ◽  
J. Ouyang ◽  
M. Ball-Burnett ◽  
D. Ranney

To examine the hypothesis that increases in fiber cross-sectional area mediated by high-resistance training (HRT) would result in a decrease in fiber capillarization and oxidative potential, regardless of fiber type, we studied six untrained males (maximum oxygen consumption, 45.6 ± 2.3 ml ⋅ kg−1 ⋅ min−1; mean ± SE) participating in a 12-wk program designed to produce a progressive hypertrophy of the quadriceps muscle. The training sessions, which were conducted 3 times/wk, consisted of three sets of three exercises, each performed for 6–8 repetitions maximum (RM). Measurements of fiber-type distribution obtained from tissue extracted from the vastus lateralis at 0, 4, 7, and 12 wk indicated reductions ( P < 0.05) in type IIB fibers (15.1 ± 2.1% vs. 7.2 ± 1.3%) by 4 wk in the absence of changes in the other fiber types (types I, IIA, and IIAB). Training culminated in a 17% increase ( P < 0.05) in cross-sectional area by 12 wk with initial increases observed at 4 wk. The increase was independent of fiber type-specific changes. The number of capillaries in contact with each fiber type increased by 12 wk, whereas capillary contacts-to-fiber area ratios remained unchanged. In a defined cross-sectional field, HRT also increased the capillaries per fiber at 12 wk. Training failed to alter cellular oxidative potential, as measured by succinic dehydrogenase (SDH) activity, regardless of fiber type and training duration. It is concluded that modest hypertrophy induced by HRT does not compromise cellular tissue capillarization and oxidative potential regardless of fiber type.


2021 ◽  
Vol 154 (9) ◽  
Author(s):  
C. Manno ◽  
E. Tammineni ◽  
Y. Oropeza ◽  
L. Figueroa ◽  
E. Rios

This work describes a simple way to identify fiber types in living muscles by fluorescence lifetime imaging microscopy (FLIM). We quantified the mean values of lifetimes derived from a two-exponential fit (τ1 and τ2) in freshly dissected mouse FDB and soleus muscles. While τ1 values did not change between muscles, the distribution of τ2 shifted to higher values in FDB. To understand the origin of this difference, we obtained maps of autofluorescence lifetimes in cryosections of both muscles and paired them with immunofluorescence images of myosin heavy chain isoforms (MHC), which allow identification of fiber types. In soleus, τ2 was 3.1 ns for type I (SEM = 0.009, n = 49), 3.4 ns for type IIA (SEM = 0.01, n = 30), and 3.3 ns for type IIX (SEM = 0.01, n = 21). In FDB muscle, τ2 was 3.17 ns for type I (SEM = 0.04, n = 18), 3.5 ns for type IIA (SEM = 0.03, n = 27), and 3.62 ns for type IIX (SEM = 0.03, n = 22). From the distribution of measures, it follows that an FDB fiber with τ2 &gt;3.3 ns is expected to be of type II, and of type I otherwise. This simple classification method has first- and second-class errors estimated at 0.06 and 0.27, respectively. Studies in progress aim at further elucidating the reasons for the different lifetimes, not just among fiber types but between fibers of the same type in the two muscles. Preliminary results point at differences in both the oxidation-reduction and protein-bound versus free states of flavins as causes for the observed divergence of fluorescence lifetimes. Lifetime maps of autofluorescence therefore constitute a tool to identify fiber type that, being practical, fast, and noninvasive, can be applied in living tissue without compromising other experimental interventions.


2010 ◽  
Vol 299 (6) ◽  
pp. E1053-E1060 ◽  
Author(s):  
Joachim Nielsen ◽  
Charlotte Suetta ◽  
Lars G. Hvid ◽  
Henrik D. Schrøder ◽  
Per Aagaard ◽  
...  

Previous studies have shown that skeletal muscle glycogen and mitochondria are distributed in distinct subcellular localizations, but the role and regulation of these subcellular localizations are unclear. In the present study, we used transmission electron microscopy to investigate the effect of disuse and aging on human skeletal muscle glycogen and mitochondria content in subsarcolemmal (SS), intermyofibrillar (IMF), and intramyofibrillar (intra) localizations. Five young (∼23 yr) and five old (∼66 yr) recreationally active men had their quadriceps muscle immobilized for 2 wk by whole leg casting. Biopsies were obtained from m. vastus lateralis before and after the immobilization period. Immobilization induced a decrement of intra glycogen content by 54% ( P < 0.001) in both age groups and in two ultrastructurally distinct fiber types, whereas the content of IMF and SS glycogen remained unchanged. A localization-dependent decrease ( P = 0.03) in mitochondria content following immobilization was found in both age groups, where SS mitochondria decreased by 33% ( P = 0.02), superficial IMF mitochondria decreased by 20% ( P = 0.05), and central IMF mitochondria remained unchanged. In conclusion, our findings demonstrate a localization-dependent adaptation to immobilization in glycogen and mitochondria content of skeletal muscles of both young and old individuals. Specifically, this suggests that short-term disuse preferentially affects glycogen particles located inside the myofibrils and that mitochondria volume plasticity can be dependent on the distance to the fiber border.


1985 ◽  
Vol 59 (6) ◽  
pp. 1716-1720 ◽  
Author(s):  
P. A. Tesch ◽  
J. Karlsson

Tissue samples were obtained from vastus lateralis and deltoid muscles of physical education students (n = 12), Greco-Roman wrestlers (n = 8), flat-water kayakers (n = 9), middle- and long-distance runners (n = 9), and olympic weight and power lifters (n = 7). Histochemical stainings for myofibrillar adenosinetriphosphatase and NADH-tetrazolium reductase were applied to assess the relative distribution of fast-twitch and slow-twitch (ST) muscle fiber types and fiber size. The %ST was not different in the vastus (mean SD 48 +/- 14) and deltoid (56 +/- 13) muscles. The %ST was higher (P less than 0.001), however, in the deltoid compared with vastus muscle of kayakers. This pattern was reversed in runners (P less than 0.001). The %ST of the vastus was higher (P less than 0.001) in runners than in any of the other groups. The %ST of the deltoid muscle was higher in kayakers than in students, runners (P less than 0.001), and lifters (P less than 0.05). The mean fiber area and the area of ST fibers were greater (P less than 0.01) in the vastus than the deltoid muscle. Our data show a difference in fiber type distribution between the trained and nontrained muscles of endurance athletes. This pattern may reflect the adaptive response to long-term endurance training.


1991 ◽  
Vol 261 (5) ◽  
pp. C774-C779 ◽  
Author(s):  
M. Locke ◽  
E. G. Noble ◽  
B. G. Atkinson

The most prominent group of stress or heat-shock proteins (HSPs) has an Mr of approximately 70,000 and is collectively referred to as the HSP70 family. The extent of stress inducibility and subcellular location of the various HSP70 isoforms differ, but all appear to be involved with ATP-dependent stabilization or solubilization of proteins. One isoform, termed the inducible isoform of HSP70 (HSP72i), is normally absent in unstressed cells. In a previous study, we detected a protein corresponding in Mr and pI to HSP72i in unstressed rat muscle. Therefore, it was of interest to determine if this expression in unstressed muscle cells is general or confined to specific muscle fiber types. To answer this question we have employed various rat hindlimb muscles that differ in fiber type proportion from predominantly type I (soleus) to predominantly type IIB (white gastrocnemius). Proteins from muscle homogenates were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, blotted to a nylon membrane, probed with a monoclonal antibody for HSP72i, and visualized using an alkaline phosphatase-conjugated secondary antibody. Immunoblot analyses demonstrate the constitutive expression of HSP72i in rat muscles comprised primarily of type I muscle fibers (soleus), but not in muscles comprised primarily of type IIB fibers (white gastrocnemius). In muscles of mixed fiber type, HSP72i content is roughly proportional to the percentage of type I fibers. These results substantiate that unstressed rat muscles express the inducible HSP72 isoform and demonstrate that its constitutive expression is proportional to the type I muscle fiber composition.


1992 ◽  
Vol 40 (4) ◽  
pp. 563-568 ◽  
Author(s):  
R S Staron ◽  
R S Hikida

A muscle biopsy from the vastus lateralis muscle of a strength-trained woman was found to contain an unusual fiber type composition and was analyzed by histochemical, biochemical, and ultrastructural techniques. Special attention was given to the C-fibers, which comprised over 15% of the total fiber number in the biopsy. The mATPase activity of the C-fibers remained stable to varying degrees over the pH range normally used for routine mATPase histochemistry. Although a continuum existed, the C-fibers were histochemically subdivided into three main fiber types: IC, IIC, and IIAC. The IC fibers were histochemically more similar to the Type I, the IIAC were more similar to the Type IIA, and the IIC were darkly stained throughout the pH range. Biochemical analysis revealed that all C-fibers coexpressed myosin heavy chains (MHC) I and IIa in variable ratios. The histochemical staining intensity correlated with the myosin heavy chain composition such that the Type IC fibers contained a greater ratio of MHCI/MHCIIa, the IIAC contained a greater ratio of MHCIIa/MHCI, and the Type IIC contained equal amounts of these two heavy chains. Ultrastructural data of the C-fiber population revealed an oxidative capacity between fiber Types I and IIA and suggested a range of mitochondrial volume percent from highest to lowest such that I greater than IC greater than IIC greater than IIA-C greater than IIA. Under physiological conditions, it appears that the IC fibers represent Type I fibers that additionally express some fast characteristics, whereas the Type IIAC are Type IIA fibers that additionally express some slow characteristics. Fibers expressing a 50:50 mixture of MHCI and MHCIIa (IIC fibers) were rarely found. It is not known whether C-fibers represent a distinct population between the fast- and slow-twitch fibers that is specifically adapted to a particular usage or whether they are transforming fibers in the process of going from fast to slow or slow to fast.


1993 ◽  
Vol 41 (7) ◽  
pp. 1013-1021 ◽  
Author(s):  
S Boudriau ◽  
M Vincent ◽  
C H Côté ◽  
P A Rogers

We used immunochemical quantification and indirect immunofluorescence to investigate the cell content, distribution, and organization of microtubules in adult rat slow-twitch soleus and fast-twitch vastus lateralis muscles. An immunoblotting assay demonstrated that the soleus muscle (primarily Type I fibers) was found to have a 1.7-fold higher relative content of alpha-tubulin compared with the superficial portion of the vastus lateralis muscle (primarily Type IIb fibers). Both physiological muscle types revealed a complex arrangement of microtubules which displayed oblique, longitudinal, and transverse orientations within the sarcoplasmic space. The predominance of any one particular orientation varied significantly from one muscle tissue section to another. Nuclei were completely surrounded by a dense net-like structure of microtubules. Both muscle fiber types were found to possess a higher density of microtubules in the subsarcolemmal region. These microtubules followed the contour of the sarcolemma in slightly contracted fibers and showed a fine punctate appearance indicative of a restricted distribution. The immunofluorescence results indicate that microtubules are associated with the sarcolemma and therefore may form a part of the membrane cytoskeletal domain of the muscle fiber. We conclude that the microtubule network of the adult mammalian skeletal muscle fiber constitutes a bone fide component of the exosarcomeric cytoskeletal lattice domain along with the intermediate filaments, and as such could therefore participate in the mechanical integration of the various organelles of the myofibers during the contraction-relaxation cycle.


1995 ◽  
Vol 78 (6) ◽  
pp. 2033-2038 ◽  
Author(s):  
D. N. Proctor ◽  
W. E. Sinning ◽  
J. M. Walro ◽  
G. C. Sieck ◽  
P. W. Lemon

Morphometry and oxidative capacity of slow-twitch (type I) and fast-twitch (type IIa and IIb) muscle fibers obtained from vastus lateralis needle biopsies were compared between younger (21-30 yr) and older (51-62 yr) normal fit (maximal O2 uptake = 47.0 vs. 32.3 ml.kg-1.min-1) and endurance-trained (66.3 vs. 52.7 ml.kg-1.min-1) men (n = 6/group). The older groups had smaller type IIa (31%) and IIb (40%) fiber areas and fewer capillaries surrounding these fibers than did younger groups. The reduced type II fiber areas and capillary contacts associated with aging were also observed in the older trained men. However, the capillary supply per unit type II fiber area was not affected by age but was enhanced by training. Additionally, on the basis of quantitative histochemical analysis, succinate dehydrogenase activities of type IIa fibers in the older trained men [4.07 +/- 0.68 (SD) mmol.min-1.l-1] were similar to those observed in younger trained men (4.00 +/- 0.48 mmol.min-1.l-1) and twofold higher than in older normal fit men (2.01 +/- 0.65 mmol.min-1.l-1; age x fitness interaction, P < 0.05). Type I muscle fibers were unaffected by age but were larger and had more capillary contacts and higher succinate dehydrogenase activities in the trained groups. The findings of this study suggest that aging results in a decrease in type II fiber size and oxidative capacity in healthy men and that this latter effect can be prevented by endurance training. Conclusions regarding the effects of age and training status on muscle capillarization depend largely on how these data are expressed.


1987 ◽  
Vol 63 (1) ◽  
pp. 252-256 ◽  
Author(s):  
K. P. O'Reilly ◽  
M. J. Warhol ◽  
R. A. Fielding ◽  
W. R. Frontera ◽  
C. N. Meredith ◽  
...  

Five healthy untrained young male subjects were studied before, immediately after, and 10 days after a 45-min bout of eccentric exercise on a cycle ergometer (201 W). The subjects were sedentary at all other times and consumed a eucaloric meat-free diet. Needle biopsies of the vastus lateralis muscle were examined for intracellular damage and glycogen content. Immediately after exercise, muscle samples showed myofibrillar tearing and edema. At 10 days, there was myofibrillar necrosis, inflammatory cell infiltration, and no evidence of myofibrillar regeneration. Glycogen utilization during the exercise bout was 33 mmol glycosyl units/kg muscle, consistent with the metabolic intensity of 44% of maximal O2 uptake; however, the significant glycogen use by type II fibers contrasted with concentric exercise performed at this intensity. At 10 days after exercise, muscle glycogen was still depleted, in both type I and II fibers. It is possible that the alterations in muscle ultrastructures were related to the lack of repletion of muscle glycogen. Damage produced by eccentric exercise was more persistent than previously reported, indicating that more than 10 days may be necessary for recovery of muscle ultrastructure and carbohydrate reserves.


Sign in / Sign up

Export Citation Format

Share Document