High aerobic capacities in the skeletal muscles of pinnipeds: adaptations to diving hypoxia

1999 ◽  
Vol 86 (4) ◽  
pp. 1247-1256 ◽  
Author(s):  
Shane B. Kanatous ◽  
Leonard V. DiMichele ◽  
Daniel F. Cowan ◽  
Randall W. Davis

The objective was to assess the aerobic capacity of skeletal muscles in pinnipeds. Samples of swimming and nonswimming muscles were collected from Steller sea lions ( Eumetopias jubatus, n = 27), Northern fur seals ( Callorhinus ursinus, n = 5), and harbor seals ( Phoca vitulina, n = 37) by using a needle biopsy technique. Samples were either immediately fixed in 2% glutaraldehyde or frozen in liquid nitrogen. The volume density of mitochondria, myoglobin concentration, citrate synthase activity, and β-hydroxyacyl-CoA dehydrogenase was determined for all samples. The swimming muscles of seals had an average total mitochondrial volume density per volume of fiber of 9.7%. The swimming muscles of sea lions and fur seals had average mitochondrial volume densities of 6.2 and 8.8%, respectively. These values were 1.7- to 2.0-fold greater than in the nonswimming muscles. Myoglobin concentration, citrate synthase activity, and β-hydroxyacyl-CoA dehydrogenase were 1.1- to 2.3-fold greater in the swimming vs. nonswimming muscles. The swimming muscles of pinnipeds appear to be adapted for aerobic lipid metabolism under the hypoxic conditions that occur during diving.

2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 120-121
Author(s):  
Chloey P Guy ◽  
Catherine L Wellman ◽  
David G Riley ◽  
Charles R Long ◽  
Ron D Randel ◽  
...  

Abstract We previously determined that prenatal stress (PNS) differentially affected methylation of DNA from leukocytes of 28-d-old calves. Specifically, COX14 (cytochrome c oxidase (COX) assembly factor) and CKMT1B (mitochondrial creatine kinase U-type) were hypomethylated and COA5 (COX assembly factor 5), COX5A (COX subunit 5A), NRF1 (nuclear respiratory factor 1), and GSST1 (glutathione S-transferase theta-1) were hypermethylated in PNS compared to non-PNS calves (P ≤ 0.05). Our current objective was to test the hypothesis that PNS exhibit impaired mitochondrial function and greater oxidative stress than non-PNS calves. Blood and longissimus dorsi muscle samples were collected from yearling Brahman calves whose mothers were stressed by 2 h transportation at 60, 80, 100, 120, and 140 days of gestation (PNS; 8 bulls, 6 heifers) and non-PNS calves (4 bulls, 6 heifers). Serum was evaluated for the stress hormone, cortisol, and muscle damage marker, creatine kinase; muscle was analyzed for mitochondrial volume density and function by citrate synthase (CS) and COX activities, respectively, concentration of malondialdehyde, a lipid peroxidation marker, and activity of the antioxidant, superoxide dismutase (SOD). Data were analyzed using mixed linear models with treatment and sex as fixed effects. Serum cortisol was numerically higher in PNS than non-PNS calves but was not statistically different. Muscle CS and COX activities relative to protein were greater in PNS than non-PNS calves (P ≤ 0.03), but COX relative to CS activity was similar between groups. Activity of COX was greater in bulls than heifers (P = 0.03), but no other measure was affected by sex. All other measures were unaffected by PNS. Prenatal stress did not affect markers of muscle damage and oxidative stress in yearling Brahman calves at rest but mitochondrial volume density and function were greater in PNS calves. Acute stressors induce oxidative stress, so implications of differences in mitochondria in PNS calves following a stressor should be investigated.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 127-127
Author(s):  
Chloey P Guy ◽  
Lauren T Wesolowski ◽  
Audrey L Earnhardt ◽  
Dustin Law ◽  
Don A Neuendorff ◽  
...  

Abstract Temperament impacts skeletal muscle mitochondria in Brahman heifers, but this has not been investigated in steers or between cattle breeds. We hypothesized mitochondrial measures would be greater in Angus than Brahman, temperamental than calm steers, and the trapezius (TRAP) than the longissimus thoracis (LT) muscle. Samples from calm (n = 13 per breed), intermediate (n = 12 per breed), and temperamental (n=13 per breed) Angus and Brahman steers (mean±SD 10.0±0.8 mo) were evaluated for mitochondrial enzyme activities via colorimetry. Calm and temperamental LT samples were evaluated for oxidative phosphorylation (P) and electron transfer (E) capacities by high-resolution respirometry. Data were analyzed using linear models with fixed effects of breed, muscle, temperament, and all interactions. Brahman tended to have greater mitochondrial volume density (citrate synthase activity; CS) than Angus (P = 0.08), while intrinsic (relative to CS) mitochondrial function (cytochrome c oxidase activity) was greater in Angus than Brahman (P = 0.001) and greater in TRAP than LT (P = 0.008). Angus exhibited greater integrative (per mg tissue) and intrinsic P with complex I (PCI), P with complexes I+II (PCI+II), maximum noncoupled E, and E with complex II (ECII; P ≤ 0.04) and tended to have greater intrinsic leak (P = 0.1) than Brahman. Contribution of PCI to total E was greater in Angus than Brahman (P = 0.01), while contribution of ECII to total E was greater in Brahman than Angus (P = 0.05). A trend for the interaction of breed and temperament (P = 0.07) indicated calm Angus had the greatest intrinsic ECII (P ≤ 0.03) while intrinsic ECII was similar between temperamental Angus and calm and temperamental Brahman. Integrative PCI+II and ECII, and the contribution of PCI and PCI+II to overall E tended to be greater in temperamental than calm steers (P ≤ 0.09), while intrinsic ECII tended to be greater in calm than temperamental steers (P = 0.07). The impact of these mitochondrial differences on meat quality measures remains to be determined.


2001 ◽  
Vol 90 (5) ◽  
pp. 1919-1926 ◽  
Author(s):  
Shane B. Kanatous ◽  
Robert Elsner ◽  
Odile Mathieu-Costello

The purpose of this study was to examine muscle capillary supply in harbor seals. Locomotory and nonlocomotory muscles of four harbor seals (mass = 17.5–41 kg) were glutaraldehyde-perfusion fixed and samples processed for electron microscopy and analyzed by morphometry. Capillary-to-fiber number and surface ratios were 0.81 ± 0.05 and 0.16 ± 0.01, respectively. Capillary length and surface area per volume of muscle fiber were 1,495 ± 83 mm/mm3 and 22.4 ± 1.6 mm2/mm3, respectively. In the locomotory muscles, we measured capillary length and surface area per volume mitochondria (20.1 ± 1.7 km/ml and 2,531 ± 440 cm2/ml). All these values are 1.5–3 times lower than in muscles with similar or lower volume densities of mitochondria in dogs of comparable size. Compared with terrestrial mammals, the skeletal muscles of harbor seals do not match their increased aerobic enzyme capacities and mitochondrial volume densities with greater muscle capillary supply. They have a smaller capillary-to-fiber interface and capillary supply per fiber mitochondrial volume than terrestrial mammals of comparable size.


2001 ◽  
Vol 79 (6) ◽  
pp. 1053-1061 ◽  
Author(s):  
Amy C. Hirons ◽  
Donald M. Schell ◽  
David J. St. Aubin

2012 ◽  
Vol 90 (1) ◽  
pp. 110-127 ◽  
Author(s):  
J.N. Waite ◽  
V.N. Burkanov ◽  
R.D. Andrews

Approximately 1 000 Steller sea lions ( Eumetopias jubatus (Schreber, 1776); SSL) and 14 000 northern fur seals ( Callorhinus ursinus (L., 1758); NFS) breed sympatrically on Lovushki Island in the Russian Far East, creating the potential for interspecific competition for prey. An additional 13 000 – 14 000 juvenile NFS are present during the breeding season. The diets of breeding SSL and both breeding and juvenile NFS were examined through analysis of scats and spews collected during the breeding seasons of 2003, 2005, and 2007–2008. There were significant overlaps in the prey species and size selection of SSL and juvenile NFS. There were significant differences between the diets of SSL and breeding NFS. SSL and juvenile NFS fed primarily on Atka mackerel ( Pleurogrammus monopterygius (Pallas, 1810)), while breeding NFS fed on cephalopods, salmon (genus Oncorhynchus Suckley, 1861), Atka mackerel, and northern smoothtongue ( Leuroglossus schmidti Rass, 1955). The partitioning of resources between breeding animals has allowed both species to coexist within the same region and likely reflected differences in foraging abilities and provisioning strategies of the adults and the fasting abilities of their pups. However, continued growth of the NFS population may lead to the exclusion of SSL owing to interspecific competition for prey.


1988 ◽  
Vol 137 (1) ◽  
pp. 253-263 ◽  
Author(s):  
S. R. Kayar ◽  
H. Hoppeler ◽  
B. Essen-Gustavsson ◽  
K. Schwerzmann

A morphometric analysis was performed on horse muscle tissue to quantify mitochondrial distribution relative to capillaries. Samples of M. vastus medialis, M. semitendinosus, M. masseter and M. cutaneus thoracicus were preserved in a glutaraldehyde fixative for electron microscopy, or frozen for biochemical and histochemical analysis. These four muscles varied from highly oxidative in type, consisting nearly completely of type I fibres, in masseter, to highly glycolytic, primarily type IIb fibres, in cutaneus. In all four muscles, mitochondria were found in highest volume density near capillaries at the fibre border, with a sharp decline in volume density towards the fibre centre. This distribution was independent of myoglobin concentration, muscle fibre type and the activities of three key metabolic enzymes, citrate synthase, 3-OH-acyl-CoA dehydrogenase and lactate dehydrogenase.


2001 ◽  
Vol 79 (6) ◽  
pp. 1053-1061 ◽  
Author(s):  
Amy C Hirons ◽  
Donald M Schell ◽  
David J St. Aubin

Growth rates of vibrissae (whiskers), which act as a temporal record of feeding in harbor seals (Phoca vitulina) and Steller sea lions (Eumetopias jubatus), were estimated using 13C- and 15N-labeled glycine followed by stable-isotope analysis. The labeled glycine was incorporated into keratin and served as a temporal marker for growth-rate calculation. One captive harbor seal received two doses 147 days apart, while a second seal received one dose; vibrissae were analyzed after 86 and 154 days. The peak positions indicated that growth began in the fall, continued into spring, but ceased in June, with active growth rates of 0.33 mm/day. Two adult captive Steller sea lions each received two labeled doses during a 308-day period. After 427 days vibrissae in both sea lions showed two peaks corresponding to the markers; growth rates were calculated as 0.05–0.07 mm/day. Growth rates in captive juvenile and wild adult Steller sea lions, 0.10–0.17 mm/day, supported the assumption that major isotopic oscillations in vibrissae of wild sea lions were annual. The multiyear records imply that Steller sea lions retain their vibrissae; harbor seal vibrissae, in contrast, have periods of rapid growth and appear to be shed, at least in part, annually.


Sign in / Sign up

Export Citation Format

Share Document