Explosive-strength training improves 5-km running time by improving running economy and muscle power

1999 ◽  
Vol 86 (5) ◽  
pp. 1527-1533 ◽  
Author(s):  
Leena Paavolainen ◽  
Keijo Häkkinen ◽  
Ismo Hämäläinen ◽  
Ari Nummela ◽  
Heikki Rusko

To investigate the effects of simultaneous explosive-strength and endurance training on physical performance characteristics, 10 experimental (E) and 8 control (C) endurance athletes trained for 9 wk. The total training volume was kept the same in both groups, but 32% of training in E and 3% in C was replaced by explosive-type strength training. A 5-km time trial (5K), running economy (RE), maximal 20-m speed ( V 20 m), and 5-jump (5J) tests were measured on a track. Maximal anaerobic (MART) and aerobic treadmill running tests were used to determine maximal velocity in the MART ( V MART) and maximal oxygen uptake (V˙o 2 max). The 5K time, RE, and V MART improved ( P < 0.05) in E, but no changes were observed in C. V 20 m and 5J increased in E ( P < 0.01) and decreased in C ( P < 0.05).V˙o 2 max increased in C ( P < 0.05), but no changes were observed in E. In the pooled data, the changes in the 5K velocity during 9 wk of training correlated ( P< 0.05) with the changes in RE [O2 uptake ( r = −0.54)] and V MART( r = 0.55). In conclusion, the present simultaneous explosive-strength and endurance training improved the 5K time in well-trained endurance athletes without changes in theirV˙o 2 max. This improvement was due to improved neuromuscular characteristics that were transferred into improved V MART and running economy.

2003 ◽  
Vol 13 (4) ◽  
pp. 272-272 ◽  
Author(s):  
L. Paavolainen ◽  
K. Hakkinen ◽  
I. Hamalainen ◽  
A. Nummela ◽  
H. Rusko

Author(s):  
Rune K. Talsnes ◽  
Roland van den Tillaar ◽  
Øyvind Sandbakk

Purpose: To compare the effects of increased load of low- versus high-intensity endurance training on performance and physiological adaptations in well-trained endurance athletes. Methods: Following an 8-week preintervention period, 51 (36 men and 15 women) junior cross-country skiers and biathletes were randomly allocated into a low-intensity (LIG, n = 26) or high-intensity training group (HIG, n = 25) for an 8-week intervention period, load balanced using the overall training impulse score. Both groups performed an uphill running time trial and were assessed for laboratory performance and physiological profiling in treadmill running and roller-ski skating preintervention and postintervention. Results: Preintervention to postintervention changes in running time trial did not differ between groups (P = .44), with significant improvements in HIG (−2.3% [3.2%], P = .01) but not in LIG (−1.5% [2.9%], P = .20). There were no differences between groups in peak speed changes when incremental running and roller-ski skating to exhaustion (P = .30 and P = .20, respectively), with both modes being significantly improved in HIG (2.2% [3.1%] and 2.5% [3.4%], both P < .01) and in roller-ski skating for LIG (1.5% [2.4%], P < .01). There was a between-group difference in running maximal oxygen uptake changes (P = .04), tending to improve in HIG (3.0% [6.4%], P = .09) but not in LIG (−0.7% [4.6%], P = .25). Changes in roller-ski skating peak oxygen uptake differed between groups (P = .02), with significant improvements in HIG (3.6% [5.4%], P = .01) but not in LIG (−0.1% [0.17%], P = .62). Conclusion: There was no significant difference in performance adaptations between increased load of low- versus high-intensity training in well-trained endurance athletes, although both methods improved performance. However, increased load of high-intensity training elicited better maximal oxygen uptake adaptations compared to increased load of low-intensity training.


2013 ◽  
Vol 38 (6) ◽  
pp. 651-656 ◽  
Author(s):  
Kenji Doma ◽  
Glen Bede Deakin

This study examined the acute effect of strength and endurance training sequence on running economy (RE) at 70% and 90% ventilatory threshold (VT) and on running time to exhaustion (TTE) at 110% VT the following day. Fourteen trained and moderately trained male runners performed strength training prior to running sessions (SR) and running prior to strength training sessions (RS) with each mode of training session separated by 6 h. RE tests were conducted at baseline (Base-RE) and the day following each sequence to examine cost of running (CR), TTE, and lower extremity kinematics. Maximal isometric knee extensor torque was measured prior to and following each training session and the RE tests. Results showed that CR at 70% and 90% VT for SR-RE (0.76 ± 0.10 and 0.77 ± 0.07 mL·kg–0.75·m–1) was significantly greater than Base-RE (0.72 ± 0.10 and 0.70 ± 0.11 mL·kg–0.75·m–1) and RS-RE (0.73 ± 0.09 and 0.72 ± 0.09 mL·kg–0.75·m–1) (P < 0.05). TTE was significantly less for SR-RE (237.8 ± 67.4 s) and RS-RE (275.3 ± 68.0 s) compared with Base-RE (335.4 ± 92.1 s) (P < 0.01). The torque during the SR sequence was significantly reduced for every time point following the strength training session (P < 0.05). However, no significant differences were found in torque following the running session (P > 0.05), although it was significantly reduced following the strength training session (P < 0.05) during the RS sequence. These findings show that running performance is impaired to a greater degree the day following the SR sequence compared with the RS sequence.


1988 ◽  
Vol 65 (5) ◽  
pp. 2285-2290 ◽  
Author(s):  
R. C. Hickson ◽  
B. A. Dvorak ◽  
E. M. Gorostiaga ◽  
T. T. Kurowski ◽  
C. Foster

The impact of adding heavy-resistance training to increase leg-muscle strength was studied in eight cycling- and running-trained subjects who were already at a steady-state level of performance. Strength training was performed 3 days/wk for 10 wk, whereas endurance training remained constant during this phase. After 10 wk, leg strength was increased by an average of 30%, but thigh girth and biopsied vastus lateralis muscle fiber areas (fast and slow twitch) and citrate synthase activities were unchanged. Maximal O2 uptake (VO2max) was also unchanged by heavy-resistance training during cycling (55 ml.kg-1.min-1) and treadmill running (60 ml.kg-1.min-1); however, short-term endurance (4-8 min) was increased by 11 and 13% (P less than 0.05) during cycling and running, respectively. Long-term cycling to exhaustion at 80% VO2max increased from 71 to 85 min (P less than 0.05) after the addition of strength training, whereas long-term running (10 km times) results were inconclusive. These data do not demonstrate any negative performance effects of adding heavy-resistance training to ongoing endurance-training regimens. They indicate that certain types of endurance performance, particularly those requiring fast-twitch fiber recruitment, can be improved by strength-training supplementation.


Sports ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Nicolas Berryman ◽  
Iñigo Mujika ◽  
Laurent Bosquet

Evidence supports the implementation of concurrent strength and running training, within the same mesocycle, to improve performances in middle- and long-distance events. However, very little is known about the effects of concurrent training cessation. The purpose of this investigation was to describe the effects of 4 weeks of explosive strength training cessation after an 8-week concurrent training protocol. Eight runners completed this study, which first included either plyometric (n = 4) or dynamic weight training (n = 4) in addition to the usual running regimen. Explosive strength training was thereafter interrupted for 4 weeks, during which running sessions were maintained. Participants were tested at baseline, after concurrent training and after concurrent training cessation. The results suggest that the energy cost of running improvements observed after the intervention (−5.75%; 95% CI = −8.47 to −3.03) were maintained once explosive strength training was interrupted (−6.31%; 95% CI = −10.30 to −2.32). The results also suggest that neuromuscular performances were maintained after 4 weeks of concurrent training cessation, especially when tests were specific to the training intervention. Furthermore, a 3000m time trial revealed a similar pattern, with improvements after the concurrent mesocycle (−2.40%; 95% CI = −4.65 to −0.16) and after concurrent training cessation (−4.43%; 95% CI = −6.83 to −2.03). Overall, only trivial changes were observed for aerobic endurance and V˙O2peak. Together, these results suggest that short-term explosive strength training cessation might be beneficial and could be considered as a taper strategy for middle-distance runners. However, coaches and athletes must interpret these results cautiously considering the study’s low sample size and the very limited available literature in this domain.


Author(s):  
Kate M. Luckin-Baldwin ◽  
Claire E. Badenhorst ◽  
Ashley J. Cripps ◽  
Grant J. Landers ◽  
Robert J. Merrells ◽  
...  

Purpose: The completion of concurrent strength and endurance training can improve exercise economy in cyclists and runners; however, the efficacy of strength training (ST) implementation to improve economy in long-distance (LD) triathletes has not yet been investigated. The purpose of this study was to investigate physiological outcomes in LD triathletes when ST was completed concurrently to endurance training. Methods: A total of 25 LD triathletes were randomly assigned to either 26 weeks of concurrent endurance and ST (n = 14) or endurance training only (n = 11). The ST program progressed from moderate (8–12 repetitions, ≤75% of 1-repetition maximum, weeks 0–12) to heavy loads (1–6 repetitions, ≥85% of 1-repetition maximum, weeks 14–26). Physiological and performance indicators (cycling and running economy, swim time, blood lactate, and heart rate) were measured during a simulated triathlon (1500-m swim, 60-min cycle, and 20-min run) at weeks 0, 14, and 26. Maximal strength and anthropometric measures (skinfolds and body mass) were also collected at these points. Results: The endurance strength group significantly improved maximal strength measures at weeks 14 and 26 (P < .05), cycling economy from weeks 0 to 14 (P < .05), and running economy from weeks 14 to 26 (P < .05) with no change in body mass (P > .05). The endurance-only group did not significantly improve any economy measures. Conclusions: The addition of progressive load ST to LD triathletes’ training programs can significantly improve running and cycling economy without an increase in body mass.


Sign in / Sign up

Export Citation Format

Share Document