scholarly journals Redox modulation of maximum force production of fast-and slow-twitch skeletal muscles of rats and mice

2001 ◽  
Vol 90 (3) ◽  
pp. 832-838 ◽  
Author(s):  
David R. Plant ◽  
Paul Gregorevic ◽  
David A. Williams ◽  
Gordon S. Lynch

We used intact fast-twitch extensor digitorum longus (EDL) and slow-twitch soleus muscles from rats and mice to test the hypothesis that exogenous application of an oxidant would increase maximum isometric force production (Po) of slow-twitch muscles to a greater extent than fast-twitch skeletal muscles. Exposure to an oxidant, hydrogen peroxide (H2O2; 100 μM to 5 mM, 30 min), affected Po of rat muscles in a time- and dose-dependent manner. Po of rat soleus muscles was increased by 8 ± 1 (SE) and 14 ± 1% ( P < 0.01) after incubation with 1 and 5 mM H2O2, respectively, whereas in mouse soleus muscles Po was only increased after incubation with 500 μM H2O2. Po of rat EDL muscles was affected by H2O2 biphasically; initially there was a small increase (3 ± 1%), but then Po diminished significantly after 30 min of treatment. In contrast, all concentrations of H2O2 tested decreased Po of mouse EDL muscles. A reductant, dithiothreitol (DTT; rat = 10 mM, mouse = 1 mM), was added to quench H2O2, and it reversed the potentiation in Po in rat soleus but not in rat EDL muscles or in any H2O2-treated mouse muscles. After prolonged equilibration (30 min) with 5 mM H2O2 without prior activation, Po was potentiated in rat soleus but not EDL muscles, demonstrating that the effect of oxidation in the soleus muscles was also dependent on the activation history of the muscle. The results of these experiments demonstrate that Po of both slow- and fast-twitch muscles from rats and mice is modified by redox modulation, indicating that maximum Po of mammalian skeletal muscles is dependent on oxidation.

Author(s):  
Jonas Hokser Olesen ◽  
Jon Hagen Herskind ◽  
Katja Krustrup Pedersen ◽  
Kristian Overgaard

Purpose: Moderate elevations of [K+]o occur during exercise and have been shown to potentiate force during contractions elicited with subtetanic frequencies. Here, we investigated whether lactic acid (reduced chloride conductance), β2-adrenoceptor activation, and increased temperature would influence the potentiating effect of potassium in slow- and fast-twitch muscle. Methods: Isometric contractions were elicited by electrical stimulation at various frequencies in isolated rat soleus and extensor digitorum longus (EDL) muscles incubated at normal (4 mM) or elevated K+, in combination with either salbutamol (5 μM), lactic acid (18.1 mM), 9-AC (25 μM) or increased temperature (30 to 35°C). Results: Elevating [K+] from 4 mM to 7 mM (soleus) and 10 mM (EDL) potentiated isometric twitch and subtetanic force while slightly reducing tetanic. In EDL, salbutamol further augmented twitch force (+27±3 %, P<0.001) and subtetanic force (+22±4 %, P<0.001). In contrast, salbutamol reduced subtetanic force (-28±6 %, P<0.001) in soleus muscles. Lactic acid and 9-AC had no significant effects on isometric force of muscles already exposed to moderate elevations of [K+]o. The potentiating effect of elevated [K+]o was still well maintained at 35°C. Conclusion: Addition of salbutamol exerts a further force-potentiating effect in fast-twitch but not in slow-twitch muscles already potentiated by moderately elevated [K+]o, whilst neither lactic acid, 9-AC nor increased temperature exerts any further augmentation. However, the potentiating effect of elevated [K+]o was still maintained in the presence of these, thus emphasizing the positive influence of moderately elevated [K+]o for contractile performance during exercise.


1993 ◽  
Vol 73 (2) ◽  
pp. 79-87 ◽  
Author(s):  
Darl W Vander Linden ◽  
James H Cauraugh ◽  
Tracy A Greene

2012 ◽  
Vol 513 (1) ◽  
pp. 37-41 ◽  
Author(s):  
Dilip N. Athreya ◽  
Guy Van Orden ◽  
Michael A. Riley

2008 ◽  
Vol 3 (2) ◽  
pp. 219-231 ◽  
Author(s):  
Matthew J. Hodgson ◽  
David Docherty ◽  
E. Paul Zehr

The contractile history of muscle can potentiate electrically evoked force production. A link to voluntary force production, related in part to an increase in reflex excitability, has been suggested.Purpose:Our purpose was to quantify the effect of postactivation potentiation on voluntary force production and spinal H-reflex excitability during explosive plantar fexion actions.Methods:Plantar flexor twitch torque, soleus H-reflex amplitudes, and the rate of force development of explosive plantar fexion were measured before and after 4 separate conditioning trials (3 × 5 s maximal contractions).Results:Twitch torque and rate of force production during voluntary explosive plantar flexion were significantly increased (P < .05) while H-reflex amplitudes remained unchanged. Although twitch torque was significantly higher after conditioning, leading to a small increase in the rate of voluntary force production, this was unrelated to changes in reflex excitability.Conclusion:We conclude that postactivation potentiation may result in a minor increase in the rate of voluntary isometric force production that is unrelated to neural excitability.


1996 ◽  
Vol 271 (6) ◽  
pp. E1061-E1066 ◽  
Author(s):  
D. Meynial-Denis ◽  
M. Mignon ◽  
A. Miri ◽  
J. Imbert ◽  
E. Aurousseau ◽  
...  

Glutamine synthetase (GS) is a glucocorticoid-inducible enzyme that has a key role for glutamine synthesis in muscle. We hypothesized that the glucocorticoid induction of GS could be altered in aged rats, because alterations in the responsiveness of some genes to glucocorticoids were reported in aging. We compared the glucocorticoid-induced GS in fast-twitch and slow-twitch skeletal muscles (tibialis anterior and soleus, respectively) and heart from adult (age 6-8 mo) and aged (age 22 mo) female rats. All animals received dexamethasone (Dex) in their drinking water (0.77 +/- 0.10 and 0.80 +/- 0.08 mg/day per adult and aged rat, respectively) for 5 days. Dex caused an increase in both GS activity and GS mRNA in fast-twitch and slow-twitch skeletal muscles from adult and aged rats. In contrast, Dex increased GS activity in heart of adult rats, without any concomitant change in GS mRNA levels. Furthermore, Dex did not affect GS activity in aged heart. Thus the responsiveness of GS to an excess of glucocorticoids is preserved in skeletal muscle but not in heart from aged animals.


2018 ◽  
Vol 43 (8) ◽  
pp. 816-821 ◽  
Author(s):  
David Bender ◽  
Jeremy R. Townsend ◽  
William C. Vantrease ◽  
Autumn C. Marshall ◽  
Ruth N. Henry ◽  
...  

The purpose of this study was to examine the effects of acute beetroot juice (BR) administration on repeated sprint performance and isometric force production in adolescent males. Twelve male adolescents (age, 16.8 ± 1.0 years; height, 178.8 ± 9.2 cm; mass, 74.8 ± 12.5 kg; peak height velocity, 2.53 ± 1.2 years) participated in this double-blind, placebo-controlled, crossover designed study. Participants consumed 2 × 70 mL of BR (∼12.9 mmol NO3−; Beet It Sport) or a nitrate-depleted placebo (PL) at 2.5 h prior to performing isometric mid-thigh pulls (IMTP) and 4 repeated 20-s Wingate sprints interspersed with 4 min of rest. Sprint data were analyzed by a 2 × 4 (group × time) repeated-measures ANOVA while a dependent t test was used to compare conditions for IMTP peak force. A significant main effect for time (p < 0.05) was observed for peak power (PP), average power (Pavg), and fatigue index (FI) across sprints. Compared with sprint 1, sprint 4 resulted in significant decreases in PP (p < 0.000; −16.6%) and Pavg (p = 0.000; −21.8%) and FI was significantly elevated (p < 0.000; 15.2%). No significant group × time interactions were observed between conditions for PP (p = 0.402), Pavg (p = 0.479), or FI (p = 0.37). IMTP peak force was significantly higher (p = 0.004; 13.9%) following BR consumption compared with PL. The repeated sprint protocol resulted in significant fatigue while BR did not influence sprint performance. However, it appears BR administration may improve peak force production in adolescent males.


1983 ◽  
Vol 245 (1) ◽  
pp. R25-R31 ◽  
Author(s):  
G. Sjogaard

Sodium, potassium, and magnesium were analyzed in human slow-twitch (ST) and fast-twitch (FT) skeletal muscles. In contrast to other species, no relation was found between fiber composition and electrolyte distribution. In soleus (S), vastus lateralis (VL), and triceps brachii (TB) the overall mean values for 6 men and 6 women were 44 mmol K/100 g dry wt and 11 mmol Na/100 g dry wt; the intracellular concentrations were 161 mmol K/l and 26 mmol Na/l with no differences between the muscles. Analysis of fragments of single ST and FT fibers from each of the muscles also showed no difference between the fiber types in Na and K content. Small differences were seen between the muscles with regard to Mg, but these were not related to fiber composition compared with other species. During exercise to exhaustion (3 bouts of bicycling for 3 min at 325-395 W, 6 men) the extracellular electrolyte concentrations for Na, K, and Mg increased from 134 to 140, 4.5 to 5.8, and 0.75 to 0.87 mmol/l, respectively (P less than 0.05). In VL Na content increased from 9.8 to 16.5 mmol/100 g dry wt, while intracellular [Na] remained constant. In contrast, intracellular [K] decreased from 161 to 141 mmol/l (P less than 0.05). No such changes occurred in TB. In concert with other studies the present changes in electrolytes in the working muscles indicate that muscle fatigue may be related to changes at the muscle fiber membrane.


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Pabodha Hettige ◽  
Uzma Tahir ◽  
Kiisa C. Nishikawa ◽  
Matthew J. Gage

Abstract Background Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single sample, which allows for more precise characterization of differences among fiber types, including distinguishing between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA sequencing. Results EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution, and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk. Conclusions The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.


2009 ◽  
Vol 35 (2) ◽  
pp. 439-446 ◽  
Author(s):  
Jacob J. Sosnoff ◽  
Andrew D. Valantine ◽  
Karl M. Newell

Sign in / Sign up

Export Citation Format

Share Document