scholarly journals RNA-binding proteins: The next step in translating skeletal muscle adaptations?

2019 ◽  
Vol 127 (2) ◽  
pp. 654-660 ◽  
Author(s):  
Douglas W. Van Pelt ◽  
Zachary R. Hettinger ◽  
Peter W. Vanderklish

The decline of skeletal muscle mass during illness, injury, disuse, and aging is associated with poor health outcomes. Therefore, it is important to pursue a greater understanding of the mechanisms that dictate skeletal muscle adaptation. In this review, we propose that RNA-binding proteins (RBPs) comprise a critical regulatory node in the orchestration of adaptive responses in skeletal muscle. While RBPs have broadly pleiotropic molecular functions, our discussion is constrained at the outset by observations from hibernating animals, which suggest that RBP regulation of RNA stability and its impact on translational reprogramming is a key component of skeletal muscle response to anabolic and catabolic stimuli. We discuss the limited data available on the expression and functions of RBPs in adult skeletal muscle in response to disuse, aging, and exercise. A model is proposed in which dynamic changes in RBPs play a central role in muscle adaptive processes through their differential effects on mRNA stability. While limited, the currently available data suggest that understanding how adaptive (and maladaptive) changes in the expression of RBPs regulate mRNA stability in skeletal muscle could be an informative and productive research area for finding new strategies to limit atrophy and promote hypertrophy.

2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Jeetayu Biswas ◽  
Vivek L. Patel ◽  
Varun Bhaskar ◽  
Jeffrey A. Chao ◽  
Robert H. Singer ◽  
...  

Abstract The IGF2 mRNA-binding proteins (ZBP1/IMP1, IMP2, IMP3) are highly conserved post-transcriptional regulators of RNA stability, localization and translation. They play important roles in cell migration, neural development, metabolism and cancer cell survival. The knockout phenotypes of individual IMP proteins suggest that each family member regulates a unique pool of RNAs, yet evidence and an underlying mechanism for this is lacking. Here, we combine systematic evolution of ligands by exponential enrichment (SELEX) and NMR spectroscopy to demonstrate that the major RNA-binding domains of the two most distantly related IMPs (ZBP1 and IMP2) bind to different consensus sequences and regulate targets consistent with their knockout phenotypes and roles in disease. We find that the targeting specificity of each IMP is determined by few amino acids in their variable loops. As variable loops often differ amongst KH domain paralogs, we hypothesize that this is a general mechanism for evolving specificity and regulation of the transcriptome.


2012 ◽  
Vol 91 (7) ◽  
pp. 651-658 ◽  
Author(s):  
V. Palanisamy ◽  
A. Jakymiw ◽  
E.A. Van Tubergen ◽  
N.J. D’Silva ◽  
K.L. Kirkwood

Cytokines are critical mediators of inflammation and host defenses. Regulation of cytokines can occur at various stages of gene expression, including transcription, mRNA export, and post- transcriptional and translational levels. Among these modes of regulation, post-transcriptional regulation has been shown to play a vital role in controlling the expression of cytokines by modulating mRNA stability. The stability of cytokine mRNAs, including TNFα, IL-6, and IL-8, has been reported to be altered by the presence of AU-rich elements (AREs) located in the 3′-untranslated regions (3′UTRs) of the mRNAs. Numerous RNA-binding proteins and microRNAs bind to these 3′UTRs to regulate the stability and/or translation of the mRNAs. Thus, this paper describes the cooperative function between RNA-binding proteins and miRNAs and how they regulate AU-rich elements containing cytokine mRNA stability/degradation and translation. These mRNA control mechanisms can potentially influence inflammation as it relates to oral biology, including periodontal diseases and oral pharyngeal cancer progression.


2007 ◽  
Vol 27 (18) ◽  
pp. 6569-6579 ◽  
Author(s):  
Luciano H. Apponi ◽  
Seth M. Kelly ◽  
Michelle T. Harreman ◽  
Alexander N. Lehner ◽  
Anita H. Corbett ◽  
...  

ABSTRACT mRNA stability is modulated by elements in the mRNA transcript and their cognate RNA binding proteins. Poly(U) binding protein 1 (Pub1) is a cytoplasmic Saccharomyces cerevisiae mRNA binding protein that stabilizes transcripts containing AU-rich elements (AREs) or stabilizer elements (STEs). In a yeast two-hybrid screen, we identified nuclear poly(A) binding protein 2 (Nab2) as being a Pub1-interacting protein. Nab2 is an essential nucleocytoplasmic shuttling mRNA binding protein that regulates poly(A) tail length and mRNA export. The interaction between Pub1 and Nab2 was confirmed by copurification and in vitro binding assays. The interaction is mediated by the Nab2 zinc finger domain. Analysis of the functional link between these proteins reveals that Nab2, like Pub1, can modulate the stability of specific mRNA transcripts. The half-life of the RPS16B transcript, an ARE-like sequence-containing Pub1 target, is decreased in both nab2-1 and nab2-67 mutants. In contrast, GCN4, an STE-containing Pub1 target, is not affected. Similar results were obtained for other ARE- and STE-containing Pub1 target transcripts. Further analysis reveals that the ARE-like sequence is necessary for Nab2-mediated transcript stabilization. These results suggest that Nab2 functions together with Pub1 to modulate mRNA stability and strengthen a model where nuclear events are coupled to the control of mRNA turnover in the cytoplasm.


2008 ◽  
Vol 26 (4) ◽  
pp. 493-501 ◽  
Author(s):  
Aldo Pende ◽  
Lidia Contini ◽  
Raffaella Sallo ◽  
Mario Passalacqua ◽  
Rasheeda Tanveer ◽  
...  

2019 ◽  
Author(s):  
Jeetayu Biswas ◽  
Vivek L. Patel ◽  
Varun Bhaskar ◽  
Jeffrey A. Chao ◽  
Robert H. Singer ◽  
...  

AbstractThe Igf2 mRNA binding proteins (ZBP1/IMP1, IMP2, IMP3) are highly conserved post-transcriptional regulators of RNA stability, localization and translation. They play important roles in cell migration, neural development, metabolism and cancer cell survival. The knockout phenotypes of individual IMP proteins suggest that each family member regulates a unique pool of RNAs, yet evidence and an underlying mechanism for this is lacking. Here, we combine SELEX and NMR spectroscopy to demonstrate that the major RNA binding domains of the two most distantly related IMPs (ZBP1 and IMP2) bind to different consensus sequences and regulate targets consistent with their knockout phenotypes and roles in disease. We find that the targeting specificity of each IMP is determined by few amino acids in their variable loops. As variable loops often differ amongst KH domain paralogs, we hypothesize that this is a general mechanism for evolving specificity and regulation of the transcriptome.


2018 ◽  
Author(s):  
Konstantin Krismer ◽  
Shohreh Varmeh ◽  
Molly A. Bird ◽  
Anna Gattinger ◽  
Yi Wen Kong ◽  
...  

AbstractRNA-binding proteins (RBPs) play critical roles in regulating gene expression by modulating splicing, RNA stability, and protein translation. In response to various stimuli, alterations in RBP function contribute to global changes in gene expression, but identifying which specific RBPs are responsible for the observed changes in gene expression patterns remains an unmet need. Here, we presentTransitea multi-pronged computational approach that systematically infers RBPs influencing gene expression changes through alterations in RNA stability and degradation. As a proof of principle, we applied Transite to public RNA expression data from human patients with non-small cell lung cancer whose tumors were sampled at diagnosis, or after recurrence following treatment with platinum-based chemotherapy. Transite implicated known RBP regulators of the DNA damage response and identified hnRNPC as a new modulator of chemotherapeutic resistance, which we subsequently validated experimentally. Transite serves as a generalizable framework for the identification of RBPs responsible for gene expression changes that drive cell-state transitions and adds additional value to the vast wealth of publicly-available gene expression data.


2007 ◽  
Vol 21 (6) ◽  
Author(s):  
Angele Chopard ◽  
Anu Heidi Shukla ◽  
John Lunde ◽  
Bernard Jean Jasmin

2020 ◽  
Vol 48 (9) ◽  
pp. 4725-4740 ◽  
Author(s):  
Michael Backlund ◽  
Frank Stein ◽  
Mandy Rettel ◽  
Thomas Schwarzl ◽  
Joel I Perez-Perri ◽  
...  

Abstract Cellular stress causes multifaceted reactions to trigger adaptive responses to environmental cues at all levels of the gene expression pathway. RNA-binding proteins (RBP) are key contributors to stress-induced regulation of RNA fate and function. Here, we uncover the plasticity of the RNA interactome in stressed cells, differentiating between responses in the nucleus and in the cytoplasm. We applied enhanced RNA interactome capture (eRIC) analysis preceded by nucleo-cytoplasmic fractionation following arsenite-induced oxidative stress. The data reveal unexpectedly compartmentalized RNA interactomes and their responses to stress, including differential responses of RBPs in the nucleus versus the cytoplasm, which would have been missed by whole cell analyses.


Sign in / Sign up

Export Citation Format

Share Document