Heterogeneity of responses to orthostatic stress in homozygous twins

2007 ◽  
Vol 102 (1) ◽  
pp. 249-254 ◽  
Author(s):  
D. D. O'Leary ◽  
R. L. Hughson ◽  
J. K. Shoemaker ◽  
D. K. Greaves ◽  
D. E. Watenpaugh ◽  
...  

Early analysis into the role of genetics on cardiovascular regulation has been accomplished by comparing blood pressure and heart rate in homozygous twins during unstressed, resting physiological conditions. However, many variables, including cognitive and environmental factors, contribute to the regulation of cardiovascular hemodynamics. Therefore, the purpose of this study was to determine the hemodynamic response of identical twins to an orthostatic stress, ranging from supine rest to presyncope. Heart rate, arterial blood pressure, middle cerebral artery blood velocity, an index of cerebrovascular resistance, cardiac output, total peripheral resistance, and end-tidal carbon dioxide were measured in 16 healthy monozygotic twin pairs. Five minutes of supine resting baseline data were collected, followed by 5 min of 60° head-up tilt. After 5 min of head-up tilt, lower body negative pressure was applied in increments of 10 mmHg every 3 min until the onset of presyncope, at which time the subject was returned to the supine position for a 5-min recovery period. The data indicate that cardiovascular regulation under orthostatic stress demonstrates a significant degree of variance between identical twins, despite similar orthostatic tolerance. As the level of stress increases, so does the difference in the cardiovascular response within a twin pair. The elevated variance with increasing stress may be due to an increase in the role of environmental factors, as the influential role of genetics nears a functional limit. Therefore, although orthostatic tolerance times were very similar between identical twins, the mechanism involved in sustaining cardiovascular function during increasing stress was different.

2002 ◽  
Vol 103 (3) ◽  
pp. 221-226 ◽  
Author(s):  
V.L. COOPER ◽  
R. HAINSWORTH

During orthostatic stress, an increase in peripheral vascular resistance normally results in arterial blood pressure being well maintained, despite a decrease in cardiac output. The present study was undertaken to determine whether the sensitivity of the carotid baroreceptor reflex was increased during orthostatic stress and whether failure to develop this increase was associated with poor orthostatic tolerance. Three groups of subjects were studied: asymptomatic controls; patients investigated for suspected posturally related syncope but who had normal responses to an orthostatic stress test (normal patients); and patients who were shown to have low orthostatic tolerance (early fainters). We determined responses of R–R interval and forearm vascular resistance (mean arterial pressure/brachial artery velocity by Doppler ultrasonography) to the loading and unloading of carotid baroreceptors by application of pressures of -30 and +30mmHg to a chamber fitted over the neck. Responses were determined after 20min of supine rest and after 10min of head-up tilt at 60°. Responses of cardiac interval were not significantly different between the three groups, and they were not altered by the postural change. Vascular responses also did not differ between the groups during supine rest. However, in healthy volunteers and in normal patients, responses to both neck suction and pressure were significantly enhanced during head-up tilt. In controls, responses to suction were increased by tilt from 0.04±0.1 to -1.01±0.2%·mmHg-1 (means±S.E.M.; P<0.001) and those to neck pressure from -0.6±0.3 to -3.1±1.1%·mmHg-1 (P<0.05). In the normal patients, the corresponding changes were: during suction, from -0.2±0.1 to -0.7±0.1%·mmHg-1 (P<0.05); during pressure, from -0.7±0.1 to -1.5±0.3%·mmHg-1 (P<0.05). In contrast, in patients with low orthostatic tolerance, posture had no effect on the reflex (neck suction, from -0.3±0.1 to -0.3±0.1%·mmHg-1; neck pressure, from -1.0±0.3 to -0.9±0.2%·mmHg-1). We suggest that an increase in the sensitivity of the carotid baroreceptor/vascular resistance reflex may be important in the maintenance of blood pressure during orthostatic stress, and that failure of this to occur in patients with posturally related syncope may go some way towards explaining their poor orthostatic tolerance.


2014 ◽  
Vol 63 (6) ◽  
pp. 435-438 ◽  
Author(s):  
Kunihiko Tanaka ◽  
Shiori Tokumiya ◽  
Yumiko Ishihara ◽  
Yumiko Kohira ◽  
Tetsuro Katafuchi

1978 ◽  
Vol 75 (1) ◽  
pp. 65-79 ◽  
Author(s):  
H. B. Lillywhite ◽  
R. S. Seymour

1. Blood pressure was measured in the dorsal aorta of restrained, unanaesthetized tiger snakes (Notechis scutatus) at different body temperatures during graded, passive tilt. Aortic blood pressure in horizontal snakes showed no significant change over a range of body temperatures between 18 and 33 degrees C (mean of measurements on 16 snakes = 42.2 +/− I.98 mmHg), while heart rate increased logarithmically (Q10 approximately 2.5). Blood pressure was stable during heating and cooling between body temperatures of 15 and 30 degrees C, but the pressure was 10--50% higher during heating than during cooling. 2. Head-up tilt usually caused a brief fall in pressure at heart level followed by partial or complete recovery and tachycardia. At the cessation of tilt, there was a characteristic overshoot of the blood pressure followed by readjustment to control (pretilt) levels. Head-down tilt typically increased pressure which then either stabilized or returned toward pretilt levels. Heart rate changes during head-down tilt were not consistent in direction or magnitude. Stabilized pressures at mid-body usually increased following head-up tilt and decreased following head-down tilt, indicating physiological adjustment to posture change. Blood pressure control was evident at body temperatures ranging from 10 to 38 degrees C, but was most effective at the higher and behaviourally preferred temperatures. 3. Propranolol lowered heart rate but did not influence pressure in horizontal snakes. During head-up tilt propranolol eliminated or reduced tachycardia and sometimes reduced the efficacy of pressure compensation for tilt. Phentolamine increased heart rate, lowered blood pressure, and eliminated pressure regulation during tilt. The results suggest that sympathetically mediated reflexes assist central blood pressure regulation in the tiger snake, with vasomotor adjustments having greater importance than changes in heart rate.


1981 ◽  
Vol 240 (3) ◽  
pp. H421-H429 ◽  
Author(s):  
G. Baccelli ◽  
R. Albertini ◽  
A. Del Bo ◽  
G. Mancia ◽  
A. Zanchetti

To evaluate whether sinoaortic afferents contribute to the hemodynamic pattern of fighting, cardiovascular changes associated with fighting were studied in cats before and after sinoaortic denervation. Sinoaortic denervation exaggerates the decrease in heart rate, cardiac output, and arterial pressure during immobile confrontation (hissing, staring but no movement). During nonsupportive fighting (fighting with forelimbs while lying on one side) and supportive fighting ( fighting while standing on four feet) sinoaortic denervation reduces the increase in heart rate and cardiac output, minimizes the mesenteric vasoconstriction, induces a fall in arterial blood pressure, but does not affect iliac vasoconstriction or vasodilatation. The hemodynamic pattern of fighting is similarly changed by temporary inactivation of carotid sinus baroreflexes by common carotid occlusion as by chronic section of sinoaortic nerves. It is concluded that sinoaortic reflexes play an important role in the cardiovascular patterns accompanying natural fighting. They favor cardiac action and allow a marked visceral vasoconstriction to occur, thus minimizing or preventing a fall in blood pressure during emotional behavior.


1999 ◽  
Vol 276 (6) ◽  
pp. H1918-H1926 ◽  
Author(s):  
Piotr Paczwa ◽  
Ewa Szczepańska-Sadowska ◽  
Slawomir Łoń, Ursula Ganten ◽  
Detlev Ganten

In acute experiments, intracranially applied angiotensin II and vasopressin elicit significant cardiovascular effects. The purpose of the present study was to find out whether chronic intrabrain elevation of these peptides, occurring in the renin transgenic TGR(mRen2)27 (TGR) rats, results in an alteration of the cardiovascular control. Mean arterial blood pressure (MAP) and heart rate responses to hypovolemia were examined in hypertensive TGR and normotensive Sprague-Dawley (SD) rats under control conditions and during blockade of central AT1 or V1 receptors. Both groups received cerebroventricular infusions of either 1) cerebrospinal fluid ( series 1), 2) AT1 receptors antagonist (AT1ANT, series 2), or 3) V1 receptors antagonist (V1ANT, series 3). Blockade of AT1 and V1 receptors decreased MAP in TGR but not in SD rats. In SD rats, bleeding elicited a similar decrease of MAP in each series and a transient increase of heart rate in series 3. In TGR, hemorrhage caused bradycardia and decrease of MAP, which was greater than in SD rats. Hemorrhagic hypotension in TGR was abolished by V1ANT and bradycardia by V1ANT or AT1ANT. The results demonstrate remarkable differences in cardiovascular adjustment to hemorrhage in SD and TGR rats and provide evidence for enhanced involvement of central V1 and AT1 receptors in the regulation of blood pressure during hypovolemia in TGR. Central V1 vasopressin receptors play a crucial role in eliciting posthemorrhagic hypotension and bradycardia in this strain.


1982 ◽  
Vol 63 (s8) ◽  
pp. 331s-333s ◽  
Author(s):  
P. C. Rubin ◽  
Kathleen McLean ◽  
J. L. Reid

1. Two studies were performed to elucidate the role of opioids in blood pressure control in man. 2. Study 1: nine normal subjects, 18–32 years, received in a randomized single blind manner, volume matched infusions of a Met-enkephalin analogue (DAMME) 0.5 mg, naloxone 0.2 mg/kg or saline. Blood pressure, heart rate and plasma noradrenaline were determined supine and after a 5 min, 70° head-up tilt at 0, 3/4, 2, 3, 4, 5 and 6 h. 3. Study 2: seven subjects, after baseline recordings of blood pressure and heart rate received six incremental infusions of sodium nitroprusside, 1.5–7.5 μg min−1 kg−1. They then received DAMME or naloxone and the nitroprusside infusions were repeated between 3 and 4 h. There was a significant linear relationship between fall in mean arterial pressure and rise in heart rate in each case and the slope was used as an index of baroreflex sensitivity. 4. Neither naloxone nor DAMME influenced supine blood pressure or heart rate. Blood pressure after head-up tilt was significantly (analysis of variance) decreased by DAMME for up to 5 h but not by naloxone, the effect being most marked at 3 h: systolic (mean ± sd), placebo 110 ± 6, naloxone 106 ± 10, DAMME 96 ± 16 (P< 0.02); diastolic (mean ± sd), placebo 78 ± 7, naloxone 79 ± 5, DAMME 67 ± 8 (P < 0.01). The increases in heart rate and plasma noradrenaline on tilting after DAMME were not significantly different from values with placebo or naloxone. The 3 h values for heart rate were: placebo 87 ± 16, naloxone 88 ± 19, DAMME 89 ± 23 (P > 0.1); for plasma noradrenaline (nmol/l): placebo 6.0 ± 2.2, naloxone 5.8 ± 1.9, DAMME 6.0 ± 1.9 (P > 0.1). 5. Naloxone significantly increased the slope (beats per min/mmHg) of the regression relationship from a mean of 1.8 ± 0.07 to 3.0 ± 1.3 (P < 0.05), and DAMME reduced the slope from 2.7 ± 1.7 to 1.2 ± 0.5 (P < 0.05). 6. We conclude that endogenous opioids modulate baroreflex function in man.


2020 ◽  
Vol 27 (07) ◽  
pp. 1470-1475
Author(s):  
Mohsin Riaz Askri ◽  
Shumyala Maqbool ◽  
Kausar Abbas Shah ◽  
Shahbaz Ahmad

Objectives: To determine the role of 800 mg oral gabapentin in attenuating cardiovascular response to laryngoscopy and tracheal intubation. Study Design: Double Blind Randomized Control Trial. Setting: Independent University Hospital/Independent Medical College, Faisalabad, Pakistan. Period: Six months from January1st 2019 to June 30th 2019. Material & Methods: This study included 60 patients which were divided into two equal groups. 800 mg oral gabapentin was given to group I while capsule placebo was administrated to group II patients in pre-operative area one hour prior to surgery. Heart rate, systolic, diastolic and mean arterial blood pressure were taken after induction of anesthesia at base line and then 1,2,3,4,5,10 and 15 minutes after endotracheal intubation. SPSS version 11 was used to analyze the data. Heart rate systolic, diastolic and mean arterial blood pressure were dependent variables while placebo and gabapentin were independent variables. Results: Out of total 60 patients there were 36 (60 %) males and 24 (40 %) females. In group I mean age was 37.1 while in group II it was 36.3. As compare to group II there was decreased cardiovascular response in group I. There was a significant decrease in systolic blood pressure at 1,2 and 10 minutes; diastolic blood pressure at 3 minutes; heart rate at 10 and 15 minutes and mean arterial blood pressure at 3 minutes after induction in group I. Conclusion: Cardiovascular response to laryngoscopy and intubation is significantly reduced with oral gabapentin.


2003 ◽  
Vol 284 (3) ◽  
pp. H1003-H1007 ◽  
Author(s):  
Baojian Xue ◽  
Hope Gole ◽  
Jaya Pamidimukkala ◽  
Meredith Hay

This study reports the effects of angiotensin II (ANG II), arginine vasopression (AVP), phenylephrine (PE), and sodium nitroprusside (SNP) on baroreflex control of heart rate in the presence and absence of the area postrema (AP) in conscious mice. In intact, sham-lesioned mice, baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of ANG II were significantly less than those observed with similar increases in arterial pressure with PE (slope: −3.0 ± 0.9 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). Baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of AVP were the same as those observed with PE in sham animals (slope: −5.8 ± 0.7 vs. −8.1 ± 1.5 beats · min−1 · mmHg−1). After the AP was lesioned, the slope of baroreflex inhibition of heart rate was the same whether pressure was increased with ANG II, AVP, or PE. The slope of the baroreflex-induced increases in heart rate due to decreases in arterial blood pressure with SNP were the same in sham- and AP-lesioned animals. These results indicate that, similar to other species, in mice the ability of ANG II to acutely reset baroreflex control of heart rate is dependent on an intact AP.


1975 ◽  
Vol 228 (2) ◽  
pp. 386-391 ◽  
Author(s):  
LA Hohnke

Arterial blood pressure (ABP) responses to graded hemorrhage and passive head-up tilt were studied in restrained, anesthetized, and unanesthetized iguanas. The ABP fell slowly in response to hemorrhage up to a critical deficit of 35 plus or minus 19% of the estimated blood volume; the rate of ABP fall then increased nearly 40-fold to continued hemorrhage. Increased heart rate and decreased femoral arterial blood flow accompanied progressive hemorrhage. Propranolol (2-3 mug/kg) did not appreciably alter arterial pressure-hemorrhage curves but hemorrhage-induced increases in heart rate were diminished nearly 50%. Atropine had little effect on either the blood pressure or heart rate changes induced by hemorrhage. During passive tilts of 0-90 degrees carotid arterial pressure fell 33% before returning to control levels (2 min). Heart rate increased and femoral arterial blood flow and central venous pressure fell in response to head-up tilts. It is concluded that hemorrhage and passive head-up tilting can induce reflex cardiovascular changes that assist ABP regulation in iguanas.


Sign in / Sign up

Export Citation Format

Share Document