scholarly journals Local heating, but not indirect whole body heating, increases human skeletal muscle blood flow

2011 ◽  
Vol 111 (3) ◽  
pp. 818-824 ◽  
Author(s):  
Ilkka Heinonen ◽  
R. Matthew Brothers ◽  
Jukka Kemppainen ◽  
Juhani Knuuti ◽  
Kari K. Kalliokoski ◽  
...  

For decades it was believed that direct and indirect heating (the latter of which elevates blood and core temperatures without directly heating the area being evaluated) increases skin but not skeletal muscle blood flow. Recent results, however, suggest that passive heating of the leg may increase muscle blood flow. Using the technique of positron-emission tomography, the present study tested the hypothesis that both direct and indirect heating increases muscle blood flow. Calf muscle and skin blood flows were evaluated from eight subjects during normothermic baseline, during local heating of the right calf [only the right calf was exposed to the heating source (water-perfused suit)], and during indirect whole body heat stress in which the left calf was not exposed to the heating source. Local heating increased intramuscular temperature of the right calf from 33.4 ± 1.0°C to 37.4 ± 0.8°C, without changing intestinal temperature. This stimulus increased muscle blood flow from 1.4 ± 0.5 to 2.3 ± 1.2 ml·100 g−1·min−1 ( P < 0.05), whereas skin blood flow under the heating source increased from 0.7 ± 0.3 to 5.5 ± 1.5 ml·100 g−1·min−1 ( P < 0.01). While whole body heat stress increased intestinal temperature by ∼1°C, muscle blood flow in the calf that was not directly exposed to the water-perfused suit (i.e., indirect heating) did not increase during the whole body heat stress (normothermia: 1.6 ± 0.5 ml·100 g−1·min−1; heat stress: 1.7 ± 0.3 ml·100 g−1·min−1; P = 0.87). Whole body heating, however, reflexively increased calf skin blood flow (to 4.0 ± 1.5 ml·100 g−1·min−1) in the area not exposed to the water-perfused suit. These data show that local, but not indirect, heating increases calf skeletal muscle blood flow in humans. These results have important implications toward the reconsideration of previously accepted blood flow distribution during whole body heat stress.

2011 ◽  
Vol 300 (3) ◽  
pp. R663-R673 ◽  
Author(s):  
James Pearson ◽  
David A. Low ◽  
Eric Stöhr ◽  
Kameljit Kalsi ◽  
Leena Ali ◽  
...  

Heat stress increases limb blood flow and cardiac output (Q̇) in humans, presumably in sole response to an augmented thermoregulatory demand of the skin circulation. Here we tested the hypothesis that local hyperthermia also increases skeletal muscle blood flow at rest and during exercise. Hemodynamics, blood and tissue oxygenation, and muscle, skin, and core temperatures were measured at rest and during exercise in 11 males across four conditions of progressive whole body heat stress and at rest during isolated leg heat stress. During whole body heat stress, leg blood flow (LBF), Q̇, and leg (LVC) and systemic vascular conductance increased gradually with elevations in muscle temperature both at rest and during exercise ( r2 = 0.86–0.99; P < 0.05). Enhanced LBF and LVC were accompanied by reductions in leg arteriovenous oxygen (a-vO2) difference and increases in deep femoral venous O2 content and quadriceps tissue oxygenation, reflecting elevations in muscle and skin perfusion. The increase in LVC occurred despite an augmented plasma norepinephrine ( P < 0.05) and was associated with elevations in muscle temperature ( r2 = 0.85; P = 0.001) and arterial plasma ATP ( r2 = 0.87; P < 0.001). Isolated leg heat stress accounted for one-half of the increase in LBF with severe whole body heat stress. Our findings suggest that local hyperthermia also induces vasodilatation of the skeletal muscle microvasculature, thereby contributing to heat stress and exercise hyperemia. The increased limb muscle vasodilatation in these conditions of elevated muscle sympathetic vasoconstrictor activity is closely related to the rise in arterial plasma ATP and local tissue temperature.


2008 ◽  
Vol 295 (1) ◽  
pp. H123-H129 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu

Nitric oxide (NO) participates in locally mediated vasodilation induced by increased local skin temperature (Tloc) and in sympathetically mediated vasodilation during whole body heat stress. We hypothesized that endothelial NOS (eNOS) participates in the former, but not the latter, response. We tested this hypothesis by examining the effects of the eNOS antagonist NG-amino-l-arginine (l-NAA) on skin blood flow (SkBF) responses to increased Tloc and whole body heat stress. Microdialysis probes were inserted into forearm skin for drug delivery. One microdialysis site was perfused with l-NAA in Ringer solution and a second site with Ringer solution alone. SkBF [laser-Doppler flowmetry (LDF)] and blood pressure [mean arterial pressure (MAP)] were monitored, and cutaneous vascular conductance (CVC) was calculated (CVC = LDF ÷ MAP). In protocol 1, Tloc was controlled with LDF/local heating units. Tloc initially was held at 34°C and then increased to 41.5°C. In protocol 2, after a normothermic period, whole body heat stress was induced (water-perfused suits). At the end of both protocols, 58 mM sodium nitroprusside was perfused at both microdialysis sites to cause maximal vasodilation for data normalization. In protocol 1, CVC at 34°C Tloc did not differ between l-NAA-treated and untreated sites ( P > 0.05). Local skin warming to 41.5°C Tloc increased CVC at both sites. This response was attenuated at l-NAA-treated sites ( P < 0.05). In protocol 2, during normothermia, CVC did not differ between l-NAA-treated and untreated sites ( P > 0.05). During heat stress, CVC rose to similar levels at l-NAA-treated and untreated sites ( P > 0.05). We conclude that eNOS is predominantly responsible for NO generation in skin during responses to increased Tloc, but not during reflex responses to whole body heat stress.


2009 ◽  
Vol 107 (6) ◽  
pp. 1704-1709 ◽  
Author(s):  
R. Matthew Brothers ◽  
Jonathan E. Wingo ◽  
Kimberly A. Hubing ◽  
Juan Del Coso ◽  
Craig G. Crandall

The venoarteriolar response (VAR) increases vascular resistance upon increases in venous transmural pressure in cutaneous, subcutaneous, and muscle vascular beds. During orthostasis, it has been proposed that up to 45% of the increase in systemic vascular tone is due to VAR-related local mechanism(s). The objective of this project was to test the hypothesis that heat stress attenuates VAR-mediated cutaneous and whole leg vasoconstriction. During normothermic conditions, measurements of cutaneous blood flow (laser-Doppler flowmetry) and femoral artery blood flow (Doppler ultrasound) were obtained from both legs during supine and leg-dependent conditions. These measurements were repeated following a whole body heat stress (increase in internal temperature of 1.4 ± 0.2°C). Before leg dependency, cutaneous (CVC) and femoral vascular conductances (FVC) were significantly elevated in both legs during heat stress relative to normothermia ( P < 0.001). During leg dependency the absolute decrease in CVC was attenuated during heat stress ( P < 0.01) while the absolute decrease in FVC was unaffected ( P = 0.90). When CVC and FVC data were analyzed as a relative change from their respective baseline values, heat stress significantly attenuated the magnitude of vasoconstriction due to leg dependency in the cutaneous and femoral circulations ( P < 0.001 for both variables). These data suggest that an attenuated local vasoconstriction, evoked via the venoarteriolar response, may contribute to reduced blood pressure control and thus reduced orthostatic tolerance that occurs in heat-stressed individuals.


2011 ◽  
Vol 110 (5) ◽  
pp. 1406-1413 ◽  
Author(s):  
Dean L. Kellogg ◽  
Joan L. Zhao ◽  
Yubo Wu ◽  
John M. Johnson

We hypothesized that nitric oxide activation of soluble guanylyl cyclase (sGC) participates in cutaneous vasodilation during whole body heat stress and local skin warming. We examined the effects of the sGC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), on reflex skin blood flow responses to whole body heat stress and on nonreflex responses to increased local skin temperature. Blood flow was monitored by laser-Doppler flowmetry, and blood pressure by Finapres to calculate cutaneous vascular conductance (CVC). Intradermal microdialysis was used to treat one site with 1 mM ODQ in 2% DMSO and Ringer, a second site with 2% DMSO in Ringer, and a third site received Ringer. In protocol 1, after a period of normothermia, whole body heat stress was induced. In protocol 2, local heating units warmed local skin temperature from 34 to 41°C to cause local vasodilation. In protocol 1, in normothermia, CVC did not differ among sites [ODQ, 15 ± 3% maximum CVC (CVCmax); DMSO, 14 ± 3% CVCmax; Ringer, 17 ± 6% CVCmax; P > 0.05]. During heat stress, ODQ attenuated CVC increases (ODQ, 54 ± 4% CVCmax; DMSO, 64 ± 4% CVCmax; Ringer, 63 ± 4% CVCmax; P < 0.05, ODQ vs. DMSO or Ringer). In protocol 2, at 34°C local temperature, CVC did not differ among sites (ODQ, 17 ± 2% CVCmax; DMSO, 18 ± 4% CVCmax; Ringer, 18 ± 3% CVCmax; P > 0.05). ODQ attenuated CVC increases at 41°C local temperature (ODQ, 54 ± 5% CVCmax; DMSO, 86 ± 4% CVCmax; Ringer, 90 ± 2% CVCmax; P < 0.05 ODQ vs. DMSO or Ringer). sGC participates in neurogenic active vasodilation during heat stress and in the local response to direct skin warming.


2011 ◽  
Vol 25 (S1) ◽  
Author(s):  
Illka Heinonen ◽  
R. Matthew Brothers ◽  
Jukka Kemppainen ◽  
Juhani Knuuti ◽  
Kari K. Kalliokoski ◽  
...  

PLoS ONE ◽  
2016 ◽  
Vol 11 (8) ◽  
pp. e0160594 ◽  
Author(s):  
Michael A. Petrie ◽  
Amy L. Kimball ◽  
Colleen L. McHenry ◽  
Manish Suneja ◽  
Chu-Ling Yen ◽  
...  

2016 ◽  
Vol 120 (9) ◽  
pp. 1047-1058 ◽  
Author(s):  
Scott T. Chiesa ◽  
Steven J. Trangmar ◽  
José González-Alonso

The influence of temperature on the hemodynamic adjustments to direct passive heat stress within the leg's major arterial and venous vessels and compartments remains unclear. Fifteen healthy young males were tested during exposure to either passive whole body heat stress to levels approaching thermal tolerance [core temperature (Tc) + 2°C; study 1; n = 8] or single leg heat stress (Tc + 0°C; study 2; n = 7). Whole body heat stress increased perfusion and decreased oscillatory shear index in relation to the rise in leg temperature (Tleg) in all three major arteries supplying the leg, plateauing in the common and superficial femoral arteries before reaching severe heat stress levels. Isolated leg heat stress increased arterial blood flows and shear patterns to a level similar to that obtained during moderate core hyperthermia (Tc + 1°C). Despite modest increases in great saphenous venous (GSV) blood flow (0.2 l/min), the deep venous system accounted for the majority of returning flow (common femoral vein 0.7 l/min) during intense to severe levels of heat stress. Rapid cooling of a single leg during severe whole body heat stress resulted in an equivalent blood flow reduction in the major artery supplying the thigh deep tissues only, suggesting central temperature-sensitive mechanisms contribute to skin blood flow alone. These findings further our knowledge of leg hemodynamic responses during direct heat stress and provide evidence of potentially beneficial vascular alterations during isolated limb heat stress that are equivalent to those experienced during exposure to moderate levels of whole body hyperthermia.


2017 ◽  
Vol 49 (5S) ◽  
pp. 19
Author(s):  
Dustin R. Allen ◽  
Mu Huang ◽  
Iqra M. Parupia ◽  
Ariana R. Dubelko ◽  
Elliot M. Frohman ◽  
...  

2014 ◽  
Vol 307 (7) ◽  
pp. R931-R943 ◽  
Author(s):  
Yuki Tamura ◽  
Yutaka Matsunaga ◽  
Hiroyuki Masuda ◽  
Yumiko Takahashi ◽  
Yuki Takahashi ◽  
...  

A recent study demonstrated that heat stress induces mitochondrial biogenesis in C2C12 myotubes, thereby implying that heat stress may be an effective treatment to enhance endurance training-induced mitochondrial adaptations in skeletal muscle. However, whether heat stress actually induces mitochondrial adaptations in skeletal muscle in vivo is unclear. In the present study, we report the novel findings that 1) whole body heat stress produced by exposure of ICR mice to a hot environment (40°C, 30 min/day, 5 days/wk, 3 wk) induced mitochondrial adaptations such as increased mitochondrial enzyme activity (citrate synthase and 3-hydroxyacyl CoA dehydrogenase) and respiratory chain protein content (complexes I–V) in skeletal muscle in vivo and 2) postexercise whole body heat stress additively enhanced endurance training-induced mitochondrial adaptations (treadmill running, 25 m/min, 30 min/day, 5 days/wk, 3 wk). Moreover, to determine the candidate mechanisms underlying mitochondrial adaptations, we investigated the acute effects of postexercise whole body heat stress on the phosphorylation status of cellular signaling cascades that subsequently induce mitochondrial gene transcription. We found that whole body heat stress boosted the endurance exercise-induced phosphorylation of p38 MAPK, increased the phosphorylation status of p70S6K, a biomarker of mammalian target of rapamycin complex 1 activity, and unexpectedly dephosphorylated AMP-activated protein kinase and its downstream target acetyl-CoA carboxylase in skeletal muscle. Our present observations suggest that heat stress can act as an effective postexercise treatment. Heat stress treatment appeared to be clinically beneficial for people who have difficulty participating in sufficient exercise training, such as the elderly, injured athletes, and patients.


1998 ◽  
Vol 94 (2) ◽  
pp. 175-180 ◽  
Author(s):  
R. Butler ◽  
A.D. Morris ◽  
A. D. Struthers

1. Recent evidence shows that skeletal muscle blood flow is an important determinant of insulin sensitivity and that insulin-mediated vasodilatation is nitric oxide dependent. These results have given rise to the hypothesis that endothelial nitric oxide inhibition may decrease insulin sensitivity in humans. 2. We examined this hypothesis directly by evaluating the effects of systemic nitric oxide synthase inhibition with NG-monomethyl l-arginine (3 mg h−1 kg−1) on whole-body glucose uptake (euglycaemic hyperinsulinaemic clamp) and calf blood flow (bilateral calf venous occlusion plethysmography) in 16 healthy male subjects in a randomized, double-blind, placebo-controlled, crossover study. 3. NG-Monomethyl l-arginine infusion was associated with a pressor effect (119/61 ± 2/2 compared with 114/58 ± 2/2 mmHg for placebo; P < 0.001), and a negative chronotropic response (57 ± 2 compared with 62 ± 2 beats/min for placebo; P < 0.001). The glucose infusion rate was significantly increased after infusion of NG-monomethyl l-arginine (8.9 ± 0.9 compared with 7.9 ± 0.8 mg min−1 kg−1 for placebo; P = 0.002). Whole-body glucose uptake increased during the clamp, with values of 9.4 ± 0.7 and 10.9 ± 0.8 mg min−1 kg−1 for placebo and NG-monomethyl l-arginine respectively (P = 0.036; 95% confidence interval 0.2,2.8). NG-Monomethyl l-arginine was associated with increased calf blood flow by comparison with placebo (P < 0.05, area under curve). 4. These data show for the first time that systemic inhibition of nitric oxide synthesis increases rather than decreases whole-body glucose uptake. We suggest that the higher skeletal muscle blood flow seen after NG-monomethyl l-arginine may explain the observed increase in whole-body glucose uptake.


Sign in / Sign up

Export Citation Format

Share Document