scholarly journals Atrial natriuretic peptide protects against Staphylococcus aureus-induced lung injury and endothelial barrier dysfunction

2011 ◽  
Vol 110 (1) ◽  
pp. 213-224 ◽  
Author(s):  
Junjie Xing ◽  
Nurgul Moldobaeva ◽  
Anna A. Birukova

Lung inflammation and alterations in endothelial cell (EC) permeability are key events to development of acute lung injury (ALI). Protective effects of atrial natriuretic peptide (ANP) have been shown against inflammatory signaling and endothelial barrier dysfunction induced by gram-negative bacterial wall liposaccharide. We hypothesized that ANP may possess more general protective effects and attenuate lung inflammation and EC barrier dysfunction by suppressing inflammatory cascades and barrier-disruptive mechanisms shared by gram-negative and gram-positive pathogens. C57BL/6J wild-type or ANP knockout mice (Nppa−/−) were treated with gram-positive bacterial cell wall compounds, Staphylococcus aureus-derived peptidoglycan (PepG) and/or lipoteichoic acid (LTA) (intratracheal, 2.5 mg/kg each), with or without ANP (intravenous, 2 μg/kg). In vitro, human pulmonary EC barrier properties were assessed by morphological analysis of gap formation and measurements of transendothelial electrical resistance. LTA and PepG markedly increased pulmonary EC permeability and activated p38 and ERK1/2 MAP kinases, NF-κB, and Rho/Rho kinase signaling. EC barrier dysfunction was further elevated upon combined LTA and PepG treatment, but abolished by ANP pretreatment. In vivo, LTA and PepG-induced accumulation of protein and cells in the bronchoalveolar lavage fluid, tissue neutrophil infiltration, and increased Evans blue extravasation in the lungs was significantly attenuated by intravenous injection of ANP. Accumulation of bronchoalveolar lavage markers of LTA/PepG-induced lung inflammation and barrier dysfunction was further augmented in ANP−/− mice and attenuated by exogenous ANP injection. These results strongly suggest a protective role of ANP in the in vitro and in vivo models of ALI associated with gram-positive infection. Thus ANP may have important implications in therapeutic strategies aimed at the treatment of sepsis and ALI-induced gram-positive bacterial pathogens.

2015 ◽  
Vol 308 (6) ◽  
pp. L550-L562 ◽  
Author(s):  
Angelo Y. Meliton ◽  
Fanyong Meng ◽  
Yufeng Tian ◽  
Nicolene Sarich ◽  
Gokhan M. Mutlu ◽  
...  

Increased endothelial cell (EC) permeability and vascular inflammation along with alveolar epithelial damage are key features of acute lung injury (ALI). Products of 1-palmitoyl-2-arachidonoyl- sn-glycero-3-phosphorylcholine oxidation (OxPAPC) showed protective effects against inflammatory signaling and vascular EC barrier dysfunction induced by gram-negative bacterial wall lipopolysaccharide (LPS). We explored the more general protective effects of OxPAPC and investigated whether delayed posttreatment with OxPAPC boosts the recovery of lung inflammatory injury and EC barrier dysfunction triggered by intratracheal injection of heat-killed gram-positive Staphylococcus aureus (HKSA) bacteria. HKSA-induced pulmonary EC permeability, activation of p38 MAP kinase and NF-κB inflammatory cascades, secretion of IL-8 and soluble ICAM1, fibronectin deposition, and expression of adhesion molecules ICAM1 and VCAM1 by activated EC were significantly attenuated by cotreatment as well as posttreatment with OxPAPC up to 16 h after HKSA addition. Remarkably, posttreatment with OxPAPC up to 24 h post-HKSA challenge dramatically accelerated lung recovery by restoring lung barrier properties monitored by Evans blue extravasation and protein content in bronchoalveolar lavage (BAL) fluid and reducing inflammation reflected by decreased MIP-1, KC, TNF-α, IL-13 levels and neutrophil count in BAL samples. These studies demonstrate potent in vivo and in vitro protective effects of posttreatment with anti-inflammatory oxidized phospholipids in the model of ALI caused by HKSA. These results warrant further investigations into the potential use of OxPAPC compounds combined with antibiotic therapies as a treatment of sepsis and ALI induced by gram-positive bacterial pathogens.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Panfeng Fu ◽  
Anne E Cress ◽  
Ting Wang ◽  
Joe G Garcia ◽  
Viswanathan Natarajan

Paxillin, a multi-domain scaffold-adapter focal adhesion (FA) protein, plays an important role in facilitating protein networking and efficient signaling transduction. Paxillin is phosphorylated at multiple serine/threonine and tyrosine residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and the acute respiratory distress syndrome (ARDS) remains unclear. In this study, we used paxillin-specific siRNA and site-specific non-phosphorylatable mutants of paxillin to abrogate the function of paxillin, both in vitro and in vivo, to determine its role in the regulation of lung endothelial permeability and ARDS. In vitro, lipopolysaccharide (LPS) challenge of human lung microvascular endothelial cells (ECs) resulted in paxillin accumulation at focal adhesions, enhanced tyrosine phosphorylation of paxillin at Y31 and Y118, and significant endothelial barrier dysfunction. However no significant changes in Y181 phosphorylation by LPS challenge was observed. Paxillin silencing (siRNA) attenuated LPS-induced endothelial barrier dysfunction and dissociation of VE-cadherin from adherens junctions. LPS-induced paxillin phosphorylation at Y31 and Y118 was mediated by c-Abl tyrosine kinase and not by Src or focal adhesion kinase (FAK) in human lung microvascular ECs. Furthermore, down-regulation of c-Abl (siRNA) significantly reduced LPS-mediated endothelial barrier dysfunction. Transfection of human lung microvascular ECs with paxillin Y31, Y118 and Y31/Y118 mutants mitigated LPS-induced barrier dysfunction and VE-cadherin destabilization at adherens junctions. In vivo, knockdown of paxillin with siRNA in mouse lungs ameliorated LPS-induced pulmonary protein leak and lung inflammation. Together, these results suggest that c-Abl-mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates LPS-mediated pulmonary vascular permeability and injury.


2000 ◽  
Vol 44 (7) ◽  
pp. 1803-1808 ◽  
Author(s):  
Deborah A. Mosca ◽  
Malinda A. Hurst ◽  
Wendy So ◽  
Beverly S. C. Viajar ◽  
Craig A. Fujii ◽  
...  

ABSTRACT Although the microflora associated with oral mucositis initiated by cytotoxic therapy is not well characterized, several studies suggest that reduction of the microbial load in the oral cavity has some clinical benefit. The MICs of IB-367, a synthetic protegrin analog, ranged from 0.13 to 64 μg/ml for gram-positive bacteria (Streptococcus mitis, Streptococcus sanguis,Streptococcus salivarius, and Staphylococcus aureus) and from 0.06 to 8 μg/ml for gram-negative species (Klebsiella, Escherichia, andPseudomonas). IB-367 exhibited rapid, microbicidal activity against both log- and stationary-phase cultures of methicillin-resistant Staphylococcus aureus (MRSA) andPseudomonas aeruginosa. At concentrations near the MICs for these two organisms (4 and 2 μg/ml, respectively), IB-367 reduced viability by more than 3 logs in less than 16 min. Similarly, IB-367 effected a 4-log reduction of the endogenous microflora in pooled human saliva within 2 min at 250 μg/ml, a concentration readily attained by local delivery. After nine serial transfers at 0.5× the MIC, the MIC of IB-367 for MRSA and P. aeruginosa increased only two to four times. In a phase I clinical study with healthy volunteers, IB-367 was well tolerated, with no detectable systemic absorption. One hour after treatment with 9 mg of IB-367, the prevalence of gram-negative bacteria and yeast was reduced, and the density of the predominant gram-positive oral flora was decreased 1,000 times. IB-367's properties (speed of killing, breadth of spectrum, and lack of resistance) make the compound a strong candidate for the prophylaxis of oral mucositis. Phase II clinical trials with IB-367 are under way for this indication in immunocompromised subjects.


2015 ◽  
Vol 308 (8) ◽  
pp. L776-L787 ◽  
Author(s):  
Nektarios Barabutis ◽  
Christiana Dimitropoulou ◽  
Charalampos Birmpas ◽  
Atul Joshi ◽  
Gagan Thangjam ◽  
...  

New therapies toward heart and blood vessel disorders may emerge from the development of Hsp90 inhibitors. Several independent studies suggest potent anti-inflammatory activities of those agents in human tissues. The molecular mechanisms responsible for their protective effects in the vasculature remain unclear. The present study demonstrates that the transcription factor p53, an Hsp90 client protein, is crucial for the maintenance of vascular integrity, protects again LPS-induced endothelial barrier dysfunction, and is involved in the mediation of the anti-inflammatory activity of Hsp90 inhibitors in lung tissues. p53 silencing by siRNA decreased transendothelial resistance (a measure of endothelial barrier function). A similar effect was induced by the p53 inhibitor pifithrin, which also potentiated the LPS-induced hyperpermeability in human lung microvascular endothelial cells (HLMVEC). On the other hand, p53 induction by nutlin suppressed the LPS-induced vascular barrier dysfunction. LPS decreased p53 expression in lung tissues and that effect was blocked by pretreatment with Hsp90 inhibitors both in vivo and in vitro. Furthermore, the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin suppressed the LPS-induced overexpression of the p53 negative regulator MDMX as well as p53 and MDM2 (another p53 negative regulator) phosphorylation in HLMVEC. Both negative p53 regulators were downregulated by LPS in vivo. Chemically induced p53 overexpression resulted in the suppression of LPS-induced RhoA activation and MLC2 phosphorylation, whereas p53 suppression caused the opposite effects. These observations reveal new mechanisms for the anti-inflammatory actions of Hsp90 inhibitors, i.e., the induction of the transcription factor p53, which in turn can orchestrate robust vascular anti-inflammatory responses both in vivo and in vitro.


2012 ◽  
Vol 265 (2) ◽  
pp. 253-262 ◽  
Author(s):  
Ming-Chung Lin ◽  
Chia-Ling Chen ◽  
Tsan-Tzu Yang ◽  
Pui-Ching Choi ◽  
Chung-Hsi Hsing ◽  
...  

2011 ◽  
Vol 301 (6) ◽  
pp. L847-L857 ◽  
Author(s):  
Qing Lu ◽  
Pavlo Sakhatskyy ◽  
Katie Grinnell ◽  
Julie Newton ◽  
Melanie Ortiz ◽  
...  

Cigarette smoke (CS) is a major cause of chronic lung and cardiovascular diseases. Recent studies indicate that tobacco use is also a risk factor for acute lung injury (ALI) associated with blunt trauma. Increased endothelial cell (EC) permeability is a hallmark of ALI. CS increases EC permeability in vitro and in vivo; however, the underlying mechanism is not well understood. In this study, we found that only 6 h of exposure to CS impaired endothelial barrier function in vivo, an effect associated with increased oxidative stress in the lungs and attenuated by the antioxidant N-acetylcysteine (NAC). CS also exacerbated lipopolysaccharide (LPS)-induced increase in vascular permeability in vivo. Similar additive effects were also seen in cultured lung EC exposed to cigarette smoke extract (CSE) and LPS. We further demonstrated that CSE caused disruption of focal adhesion complexes (FAC), F-actin fibers, and adherens junctions (AJ) and decreased activities of RhoA and focal adhesion kinase (FAK) in cultured lung EC. CSE-induced inhibition of RhoA and FAK, endothelial barrier dysfunction, and disassembly of FAC, F-actin, and AJ were prevented by NAC. In addition, the deleterious effects of CSE on FAC, F-actin fibers, and AJ were blunted by overexpression of constitutively active RhoA and of FAK. Our data indicate that CS causes endothelial barrier dysfunction via oxidative stress-mediated inhibition of RhoA and FAK.


2015 ◽  
Vol 308 (10) ◽  
pp. L1025-L1038 ◽  
Author(s):  
Panfeng Fu ◽  
Peter V. Usatyuk ◽  
Abhishek Lele ◽  
Anantha Harijith ◽  
Carol C. Gregorio ◽  
...  

Paxillin is phosphorylated at multiple residues; however, the role of tyrosine phosphorylation of paxillin in endothelial barrier dysfunction and acute lung injury (ALI) remains unclear. We used siRNA and site-specific nonphosphorylable mutants of paxillin to abrogate the function of paxillin to determine its role in lung endothelial permeability and ALI. In vitro, lipopolysaccharide (LPS) challenge of human lung microvascular endothelial cells (HLMVECs) resulted in enhanced tyrosine phosphorylation of paxillin at Y31 and Y118 with no significant change in Y181 and significant barrier dysfunction. Knockdown of paxillin with siRNA attenuated LPS-induced endothelial barrier dysfunction and destabilization of VE-cadherin. LPS-induced paxillin phosphorylation at Y31 and Y118 was mediated by c-Abl tyrosine kinase, but not by Src and focal adhesion kinase. c-Abl siRNA significantly reduced LPS-induced endothelial barrier dysfunction. Transfection of HLMVECs with paxillin Y31F, Y118F, and Y31/118F double mutants mitigated LPS-induced barrier dysfunction and VE-cadherin destabilization. In vivo, the c-Abl inhibitor AG957 attenuated LPS-induced pulmonary permeability in mice. Together, these results suggest that c-Abl mediated tyrosine phosphorylation of paxillin at Y31 and Y118 regulates LPS-mediated pulmonary vascular permeability and injury.


2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.


2006 ◽  
Vol 50 (6) ◽  
pp. 2261-2264 ◽  
Author(s):  
Hee-Soo Park ◽  
Hyun-Joo Kim ◽  
Min-Jung Seol ◽  
Dong-Rack Choi ◽  
Eung-Chil Choi ◽  
...  

ABSTRACT DW-224a showed the most potent in vitro activity among the quinolone compounds tested against clinical isolates of gram-positive bacteria. Against gram-negative bacteria, DW-224a was slightly less active than the other fluoroquinolones. The in vivo activities of DW-224a against gram-positive bacteria were more potent than those of other quinolones.


Sign in / Sign up

Export Citation Format

Share Document