scholarly journals Exogenous Alginate Protects Staphylococcus aureus from Killing by Pseudomonas aeruginosa

2019 ◽  
Vol 202 (8) ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACT Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner. IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.

2019 ◽  
Author(s):  
Courtney E. Price ◽  
Dustin G. Brown ◽  
Dominique H. Limoli ◽  
Vanessa V. Phelan ◽  
George A. O’Toole

ABSTRACTCystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are mono-infected with either P. aeruginosa or S. aureus. We showed previously that mucoid strains of P. aeruginosa can co-exist with S. aureus in vitro due to transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm co-culture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to transcriptional downregulation of pvdA, a gene required for the production of the iron scavenging siderophore pyoverdine, as well as down-regulation of the PQS (Pseudomonas quinolone signal; 2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that co-culture of mucoid P. aeruginosa with non-mucoid P. aeruginosa can mitigate the killing of S. aureus by the non-mucoid strain of P. aeruginosa, indicating that the mechanism we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability kill S. aureus at late time points, and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the effects of mucoidy in a strain-specific manner.IMPORTANCECF patients are chronically infected by polymicrobial communities of microorganisms. The two dominant bacterial pathogens that infect CF patient lungs are P. aeruginosa and S. aureus, with ∼30% of patients co-infected by both species. Patients infected with both P. aeruginosa and S. aureus have worse outcomes than mono-infected patients, and both species persist within the same physical space in the lungs of CF patients. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus co-existence, despite evidence that P. aeruginosa kills S. aureus when these organisms are co-cultured in vitro. Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to co-exist in proximal physical space, will lead to better informed treatments for chronic polymicrobial infections.


2005 ◽  
Vol 187 (2) ◽  
pp. 554-566 ◽  
Author(s):  
Lauren M. Mashburn ◽  
Amy M. Jett ◽  
Darrin R. Akins ◽  
Marvin Whiteley

ABSTRACT Pseudomonas aeruginosa is a gram-negative opportunistic human pathogen often infecting the lungs of individuals with the heritable disease cystic fibrosis and the peritoneum of individuals undergoing continuous ambulatory peritoneal dialysis. Often these infections are not caused by colonization with P. aeruginosa alone but instead by a consortium of pathogenic bacteria. Little is known about growth and persistence of P. aeruginosa in vivo, and less is known about the impact of coinfecting bacteria on P. aeruginosa pathogenesis and physiology. In this study, a rat dialysis membrane peritoneal model was used to evaluate the in vivo transcriptome of P. aeruginosa in monoculture and in coculture with Staphylococcus aureus. Monoculture results indicate that approximately 5% of all P. aeruginosa genes are differentially regulated during growth in vivo compared to in vitro controls. Included in this analysis are genes important for iron acquisition and growth in low-oxygen environments. The presence of S. aureus caused decreased transcription of P. aeruginosa iron-regulated genes during in vivo coculture, indicating that the presence of S. aureus increases usable iron for P. aeruginosa in this environment. We propose a model where P. aeruginosa lyses S. aureus and uses released iron for growth in low-iron environments.


2019 ◽  
Vol 88 (2) ◽  
Author(s):  
Joseph S. Rom ◽  
Aura M. Ramirez ◽  
Karen E. Beenken ◽  
Gyan S. Sahukhal ◽  
Mohamed O. Elasri ◽  
...  

ABSTRACT The staphylococcal accessory regulator (sarA) plays an important role in Staphylococcus aureus infections, including osteomyelitis, and the msaABCR operon has been implicated as an important factor in modulating expression of sarA. Thus, we investigated the contribution of msaABCR to sarA-associated phenotypes in the S. aureus clinical isolates LAC and UAMS-1. Mutation of msaABCR resulted in reduced production of SarA and a reduced capacity to form a biofilm in both strains. Biofilm formation was enhanced in a LAC msa mutant by restoring the production of SarA, but this was not true in a UAMS-1 msa mutant. Similarly, extracellular protease production was increased in a LAC msa mutant but not a UAMS-1 msa mutant. This difference was reflected in the accumulation and distribution of secreted virulence factors and in the impact of extracellular proteases on biofilm formation in a LAC msa mutant. Most importantly, it was reflected in the relative impact of mutating msa as assessed in a murine osteomyelitis model, which had a significant impact in LAC but not in UAMS-1. In contrast, mutation of sarA had a greater impact on all of these in vitro and in vivo phenotypes than mutation of msaABCR, and it did so in both LAC and UAMS-1. These results suggest that, at least in osteomyelitis, it would be therapeutically preferable to target sarA rather than msaABCR to achieve the desired clinical result, particularly in the context of divergent clinical isolates of S. aureus.


2012 ◽  
Vol 80 (5) ◽  
pp. 1634-1638 ◽  
Author(s):  
Karen E. Beenken ◽  
Horace Spencer ◽  
Linda M. Griffin ◽  
Mark S. Smeltzer

ABSTRACTRecent studies suggest that extracellular DNA promotes biofilm formation inStaphylococcus aureusand, conversely, that extracellular nucleases limit the ability to form a biofilm.S. aureusproduces at least two extracellular nucleases, and in the study described in this report, we examined the impact of each of these nucleases on biofilm formation under bothin vitroandin vivoconditions. Our results demonstrate that both nucleases impact biofilm formation in the clinical isolate UAMS-1. Under certainin vitroconditions, this impact is negative, with mutation of either or both of the nuclease genes (nuc1andnuc2) resulting in an enhanced capacity to form a biofilm. However, this effect was not apparentin vivoin a murine model of catheter-associated biofilm formation. Rather, mutation of either or both nuclease genes appeared to limit biofilm formation to a degree that could be correlated with increased susceptibility to daptomycin.


2017 ◽  
Vol 61 (12) ◽  
Author(s):  
Eric F. Kong ◽  
Christina Tsui ◽  
Sona Kucharíková ◽  
Patrick Van Dijck ◽  
Mary Ann Jabra-Rizk

ABSTRACT In microbial biofilms, microorganisms utilize secreted signaling chemical molecules to coordinate their collective behavior. Farnesol is a quorum sensing molecule secreted by the fungal species Candida albicans and shown to play a central physiological role during fungal biofilm growth. Our pervious in vitro and in vivo studies characterized an intricate interaction between C. albicans and the bacterial pathogen Staphylococcus aureus, as these species coexist in biofilm. In this study, we aimed to investigate the impact of farnesol on S. aureus survival, biofilm formation, and response to antimicrobials. The results demonstrated that in the presence of exogenously supplemented farnesol or farnesol secreted by C. albicans in biofilm, S. aureus exhibited significantly enhanced tolerance to antimicrobials. By using gene expression studies, S. aureus mutant strains, and chemical inhibitors, the mechanism for the enhanced tolerance was attributed to upregulation of drug efflux pumps. Importantly, we showed that sequential exposure of S. aureus to farnesol generated a phenotype of high resistance to antimicrobials. Based on the presence of intracellular reactive oxygen species upon farnesol exposure, we hypothesize that antimicrobial tolerance in S. aureus may be mediated by farnesol-induced oxidative stress triggering the upregulation of efflux pumps, as part of a general stress response system. Hence, in mixed biofilms, C. albicans may influence the pathogenicity of S. aureus through acquisition of a drug-tolerant phenotype, with important therapeutic implications. Understanding interspecies signaling in polymicrobial biofilms and the specific drug resistance responses to secreted molecules may lead to the identification of novel targets for drug development.


mSphere ◽  
2021 ◽  
Author(s):  
Bosul Lee ◽  
Jun Yan ◽  
Amber Ulhaq ◽  
Sarah Miller ◽  
Wonjae Seo ◽  
...  

Rifabutin has been recently described as a potential adjunctive therapy for antibiotic-resistant A. baumannii infections due to hypersensitivity in iron-depleted media, which may more closely mimic an in vivo environment. Here, we report that this hyperactivity is specific for A. baumannii , rather than being a general effect for other pathogens.


2015 ◽  
Vol 197 (14) ◽  
pp. 2265-2275 ◽  
Author(s):  
Angela T. Nguyen ◽  
Jace W. Jones ◽  
Max A. Ruge ◽  
Maureen A. Kane ◽  
Amanda G. Oglesby-Sherrouse

ABSTRACTCystic fibrosis (CF) is a heritable disease characterized by chronic, polymicrobial lung infections. WhileStaphylococcus aureusis the dominant lung pathogen in young CF patients,Pseudomonas aeruginosabecomes predominant by adulthood.P. aeruginosaproduces a variety of antimicrobials that likely contribute to this shift in microbial populations. In particular, secretion of 2-alkyl-4(1H)-quinolones (AQs) contributes to lysis ofS. aureusin coculture, providing an iron source toP. aeruginosabothin vitroandin vivo. We previously showed that production of one such AQ, thePseudomonasquinolone signal (PQS), is enhanced by iron depletion and that this induction is dependent upon the iron-responsive PrrF small RNAs (sRNAs). Here, we demonstrate that antimicrobial activity againstS. aureusduring coculture is also enhanced by iron depletion, and we provide evidence that multiple AQs contribute to this activity. Strikingly, aP. aeruginosaΔprrFmutant, which produces very little PQS in monoculture, was capable of mediating iron-regulated growth suppression ofS. aureus. We show that the presence ofS. aureussuppresses the ΔprrF1,2mutant's defect in iron-regulated PQS production, indicating that a PrrF-independent iron regulatory pathway mediates AQ production in coculture. We further demonstrate that iron-regulated antimicrobial production is conserved in multipleP. aeruginosastrains, including clinical isolates from CF patients. These results demonstrate that iron plays a central role in modulating interactions ofP. aeruginosawithS. aureus. Moreover, our studies suggest that established iron regulatory pathways of these pathogens are significantly altered during polymicrobial infections.IMPORTANCEChronic polymicrobial infections involvingPseudomonas aeruginosaandStaphylococcus aureusare a significant cause of morbidity and mortality, as the interplay between these two organisms exacerbates infection. This is in part due to enhanced production of antimicrobial metabolites byP. aeruginosawhen these two species are cocultured. Using both established and newly developed coculture techniques, this report demonstrates that iron depletion increasesP. aeruginosa's ability to suppress growth ofS. aureus. These findings present a novel role for iron in modulating microbial interaction and provide the basis for understanding how essential nutrients drive polymicrobial infections.


2016 ◽  
Vol 60 (3) ◽  
pp. 1826-1829 ◽  
Author(s):  
Danielle N. Atwood ◽  
Karen E. Beenken ◽  
Tamara L. Lantz ◽  
Daniel G. Meeker ◽  
William B. Lynn ◽  
...  

We previously determined the extent to which mutations of differentStaphylococcus aureusregulatory loci impact biofilm formation as assessed underin vitroconditions. Here we extend these studies to determine the extent to which those regulatory loci that had the greatest effect on biofilm formation also impact antibiotic susceptibility. The experiments were done underin vitroandin vivoconditions using two clinical isolates ofS. aureus(LAC and UAMS-1) and two functionally diverse antibiotics (daptomycin and ceftaroline). Mutation of the staphylococcal accessory regulator (sarA) orsigBwas found to significantly increase susceptibilities to both antibiotics and in both strains in a manner that could not be explained by changes in the MICs. The impact of a mutation insarAwas comparable to that of a mutation insigBand greater than the impact observed with any other mutant. These results suggest that therapeutic strategies targetingsarAand/orsigBhave the greatest potential to facilitate the ability to overcome the intrinsic antibiotic resistance that definesS. aureusbiofilm-associated infections.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wuyang Huang ◽  
Ky Young Cho ◽  
Di Meng ◽  
W. Allan Walker

AbstractAn excessive intestinal inflammatory response may have a role in the pathogenesis of necrotizing enterocolitis (NEC) in very preterm infants. Indole-3-lactic acid (ILA) of breastmilk tryptophan was identified as the anti-inflammatory metabolite involved in probiotic conditioned media from Bifidobacteria longum subsp infantis. This study aimed to explore the molecular endocytic pathways involved in the protective ILA effect against inflammation. H4 cells, Caco-2 cells, C57BL/6 pup and adult mice were used to compare the anti-inflammatory mechanisms between immature and mature enterocytes in vitro and in vivo. The results show that ILA has pleiotropic protective effects on immature enterocytes including anti-inflammatory, anti-viral, and developmental regulatory potentials in a region-dependent and an age-dependent manner. Quantitative transcriptomic analysis revealed a new mechanistic model in which STAT1 pathways play an important role in IL-1β-induced inflammation and ILA has a regulatory effect on STAT1 pathways. These studies were validated by real-time RT-qPCR and STAT1 inhibitor experiments. Different protective reactions of ILA between immature and mature enterocytes indicated that ILA’s effects are developmentally regulated. These findings may be helpful in preventing NEC for premature infants.


2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


Sign in / Sign up

Export Citation Format

Share Document