Gene expression profiling of sex differences in HIF1-dependent adaptive cardiac responses to chronic hypoxia

2010 ◽  
Vol 109 (4) ◽  
pp. 1195-1202 ◽  
Author(s):  
Romana Bohuslavová ◽  
František Kolář ◽  
Lada Kuthanová ◽  
Jan Neckář ◽  
Aleš Tichopád ◽  
...  

Although physiological responses to chronic hypoxia, including pulmonary hypertension and right ventricular hypertrophy, have been well described, the molecular mechanisms involved in cardiopulmonary adaptations are still not fully understood. We hypothesize that adaptive responses to chronic hypoxia are the result of altered transcriptional regulations in the right and left ventricles. Here we report results from the gene expression profiling of adaptive responses in a chronically hypoxic heart. Of 11 analyzed candidate genes, the expression of seven and four genes, respectively, was significantly altered in the right ventricle of hypoxic male and female mice. In the transcriptional profile of the left ventricle, we identified a single expression change in hypoxic males ( Vegfa gene). To directly test the role of HIF1, we analyzed the expression profile in Hif1a partially deficient mice exposed to moderate hypoxia. Our data showed that Hif1a partial deficiency significantly altered transcriptional profiles of analyzed genes in hypoxic hearts. The expression changes were only detected in two genes in the right ventricle of Hif1a+/− males and in one gene in the right ventricle of Hif1a+/− females. First, our results suggest that hypoxia mainly affects adaptive expression profiles in the right ventricle and that each ventricle can respond independently. Second, our findings indicate that HIF1a plays an important role in adaptive cardiopulmonary responses and the dysfunction of HIF1 pathways considerably affects transcriptional regulation in the heart. Third, our data reveal significant differences between males and females in cardiac adaptive responses to hypoxia and indicate the necessity of optimizing diagnostic and therapeutic procedures in clinical practice, with respect to sex.

2004 ◽  
Vol 16 (2) ◽  
pp. 248
Author(s):  
C. Wrenzycki ◽  
T. Brambrink ◽  
D. Herrmann ◽  
J.W. Carnwath ◽  
H. Niemann

Array technology is a widely used tool for gene expression profiling, providing the possibility to monitor expression levels of an unlimited number of genes in various biological systems including preimplantation embryos. The objective of the present study was to develop and validate a bovine cDNA array and to compare expression profiles of embryos derived from different origins. A bovine blastocyst cDNA library was generated. Poly(A+)RNA was extracted from in vitro-produced embryos using a Dynabead mRNA purification kit. First-strand synthesis was performed with SacIT21 primer followed by randomly primed second-strand synthesis with a DOP primer mix (Roche) and a global PCR with 35 cycles using SacIT21 and DOP primers. Complementary DNA fragments from 300 to 1500bp were extracted from the gel and normalized via reassoziation and hydroxyapatite chromatography. Resulting cDNAs were digested with SacI and XhoI, ligated into a pBKs vector, and transfected into competent bacteria (Stratagene). After blue/white colony selection, plasmids were extracted and the inserts were subjected to PCR using vector specific primers. Average insert size was determined by size idenfication on agarose gels stained with ethidium bromide. After purification via precipitation and denaturation, 192 cDNA probes were double-spotted onto a nylon membrane and bound to the membrane by UV cross linking. Amplified RNA (aRNA) probes from pools of three or single blastocysts were generated as described recently (Brambrink et al., 2002 BioTechniques, 33, 3–9) and hybridized to the membranes. Expression profiles of in vitro-produced blastocysts cultured in either SOF plus BSA or TCM plus serum were compared with those of diploid parthenogenetic ones generated by chemical activation. Thirty-three probes have been sequenced and, after comparison with public data bases, 26 were identified as cDNAs or genes. Twelve out of 192 (6%) seem to be differentially expressed within the three groups;; 7/12 (58%) were down-regulated, 3/12 (25%) were up-regulated in SOF-derived embryos, and 2/12 (20%) were up-regulated in parthenogenetic blastocysts compared to their in vitro-generated counterparts. Three of these genes involved in calcium signaling (calmodulin, calreticulin) and regulation of actin cytoskeleton (destrin) were validated by semi-quantitative RT-PCR (Wrenzycki et al., 2001 Biol. Reprod. 65, 309–317) employing poly(A+) RNA from a single blastocyst as starting material. No differences were detected in the relative abundance of the analysed gene transcripts within the different groups. These findings were confirmed employing the aRNA used for hybridization in RT-PCR and showed a good representativity of the selected transcripts. Results indicate that it is possible to construct a homologous cDNA array which could be used for gene expression profiling of bovine preimplantation embryos. Supported by the Deutsche Forschungsgemeinschaft (DFG Ni 256/18-1).


2021 ◽  
Author(s):  
Arvin Haghighatfard ◽  
Soha Seifollahi ◽  
Pegah Rajabi ◽  
Niloofar Rahmani ◽  
Rojin Ghannadzadeh

Abstract Background: The high rate of methamphetamine use disorder among young adults and women of childbearing age makes it imperative to clarify the long-term effects of Methamphetamine exposure on the offspring. Behavioral and cognitive problems had been reported in children with parental Methamphetamine exposure (PME). The present study aimed to assess the acute and chronic effects of PME in molecular regulations and gene expression profiles of children during their first years of life.Methods: All subjects were recruited before birth, and sampling was conducted from the first ten days of birth, twelve months, twenty months, and thirty-six months of age. Finally, 2658 children with PME and 3573 normal children had been finished the follow-up. RNA extraction was operated from blood samples and gene expression profiling was conducted by using the Affymetrix GeneChip Human Genome U133 plus 2.0 Array Platform. Gene expression data were confirmed by Real-time PCR. Results: Gene expression profiling during thirty-six months showed several constant mRNA level alterations in children with PME compared with normal. These genes are involved in several gene ontologies and pathways involved with the immune system, neuronal functions, and bioenergetic metabolism. It seems that Methamphetamine use disorder before and during the pregnancy period may affect the expression profile of children, and these changes could remain years after birth. Affected genes have some similarities with the gene expression patterns of addiction, psychiatric disorders, neurodevelopmental disabilities, and immune deficiencies. Conclusion: Findings may shed light on the molecular effects of prenatal methamphetamine exposure and may lead to new psychological and somatic caring protocols for these children based on their potential abnormalities.


2005 ◽  
Vol 23 (9) ◽  
pp. 1826-1838 ◽  
Author(s):  
B. Michael Ghadimi ◽  
Marian Grade ◽  
Michael J. Difilippantonio ◽  
Sudhir Varma ◽  
Richard Simon ◽  
...  

Purpose There is a wide spectrum of tumor responsiveness of rectal adenocarcinomas to preoperative chemoradiotherapy ranging from complete response to complete resistance. This study aimed to investigate whether parallel gene expression profiling of the primary tumor can contribute to stratification of patients into groups of responders or nonresponders. Patients and Methods Pretherapeutic biopsies from 30 locally advanced rectal carcinomas were analyzed for gene expression signatures using microarrays. All patients were participants of a phase III clinical trial (CAO/ARO/AIO-94, German Rectal Cancer Trial) and were randomized to receive a preoperative combined-modality therapy including fluorouracil and radiation. Class comparison was used to identify a set of genes that were differentially expressed between responders and nonresponders as measured by T level downsizing and histopathologic tumor regression grading. Results In an initial set of 23 patients, responders and nonresponders showed significantly different expression levels for 54 genes (P < .001). The ability to predict response to therapy using gene expression profiles was rigorously evaluated using leave-one-out cross-validation. Tumor behavior was correctly predicted in 83% of patients (P = .02). Sensitivity (correct prediction of response) was 78%, and specificity (correct prediction of nonresponse) was 86%, with a positive and negative predictive value of 78% and 86%, respectively. Conclusion Our results suggest that pretherapeutic gene expression profiling may assist in response prediction of rectal adenocarcinomas to preoperative chemoradiotherapy. The implementation of gene expression profiles for treatment stratification and clinical management of cancer patients requires validation in large, independent studies, which are now warranted.


Blood ◽  
2006 ◽  
Vol 109 (4) ◽  
pp. 1720-1727 ◽  
Author(s):  
Remco Dijkman ◽  
Remco van Doorn ◽  
Károly Szuhai ◽  
Rein Willemze ◽  
Maarten H. Vermeer ◽  
...  

Abstract CD4+CD56+ hematodermic neoplasm (CD4+CD56+HN) is an aggressive hematopoietic malignancy with distinct clinicopathologic and immunophenotypic features that commonly involve the skin, bone marrow, and blood. Differentiation from cutaneous myelomonocytic leukemia (c-AML) may be exceedingly difficult and requires extensive phenotyping. The molecular mechanisms involved in the development of CD4+CD56+HN are largely unresolved. Moreover, recurrent chromosomal alterations have not yet been precisely defined in CD4+CD56+HN and c-AML. In the present study an integrated genomic analysis using expression profiling and array-based comparative genomic hybridization (CGH) was performed on lesional skin biopsy samples of patients with CD4+CD56+HN and c-AML. Our results demonstrate that CD4+CD56+HN and c-AML show distinct gene-expression profiles and distinct patterns of chromosomal aberrations. CD4+CD56+HN is characterized by recurrent deletion of regions on chromosome 4 (4q34), chromosome 9 (9p13-p11 and 9q12-q34), and chromosome 13 (13q12-q31) that contain several tumor suppressor genes with diminished expression (Rb1, LATS2). Elevated expression of the oncogenes HES6, RUNX2, and FLT3 was found but was not associated with genomic amplification. We noted high expression of various plasmacytoid dendritic-cell (pDC)–related genes, pointing to the cell of origin of this malignancy.


2013 ◽  
Vol 205 (2) ◽  
pp. 119-127 ◽  
Author(s):  
Jin-Lan Piao ◽  
Zheng-Guo Cui ◽  
Yukihiro Furusawa ◽  
Kanwal Ahmed ◽  
Mati Ur Rehman ◽  
...  

Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1377-1377
Author(s):  
Kazem Zibara ◽  
Daniel Pearce ◽  
David Taussig ◽  
Spyros Skoulakis ◽  
Simon Tomlinson ◽  
...  

Abstract The identification of LSC has important implications for future research as well as for the development of novel therapies. The phenotypic description of LSC now enables their purification and should facilitate the identification of genes that are preferentially expressed in these cells compared to normal HSC. However, gene-expression profiling is usually conducted on mononuclear cells of AML patients from either peripheral blood and/or bone marrow. These samples contain a mixture of blasts cells, normal hematopoietic cells and limited number of leukemic stem cells. Thus, this results in a composite profile that obscure differences between LSC and blasts cells with low proliferative potential. The aim of this study was to compare the gene expression profile of highly purified LSC versus leukemic blasts in order to identify genes that might have important roles in driving the leukemia. For this purpose, we analyzed the gene expression profiles of highly purified LSCs (Lin−CD34+CD38−) and more mature blast cells (Lin−CD34+CD38+) isolated from 7 adult AML patients. All samples were previously tested for the ability of the Lin−CD34+CD38− cells but not the Lin−CD34+CD38+ fraction to engraft using the non-obese diabetic/severe combined immuno-deficiency (NOD-SCID) repopulation assay. Affymetrix microarrays (U133A chip), containing 22,283 genes, were used for the analysis. Comparison of Lin-CD34+CD38- cell population to the Lin−CD34+CD38+ cell fraction showed 5421 genes to be expressed in both fractions. Comparative analysis of gene-expression profiles showed statistically significant differential expression of 133 genes between the 2 cell populations. Most of the genes were downregulated in the LSC-enriched fraction, compared to the more differentiated fraction. Gene ontology was used to determine the categories of the up-regulated transcripts. These transcripts, which are selectively expressed, include a number of known genes (e.g., receptors, signalling genes, proliferation and cell cycle genes and transcription factors). These genes play important roles in differentiation, self-renewal, migration and adhesion of HSCs. Among the genes showing the highest differences in expression levels were the following: ribonucleotide reductase M2 polypeptide, thymidylate synthetase, ZW10 interactor, cathepsin G, azurocidin 1, topoisomerase II, CDC20, nucleolar and spindle associated protein 1, Rac GTPase activating protein 1, leukocyte immunoglobulin-like receptor, proliferating cell nuclear antigen, myeloperoxidase, cyclin A1 (RRM2, TYMS, ZWINT, CTSG, AZU1, TOP2A, CDC20, NUSAP1, RACGAP1, LILRB2, PCNA, MPO, CCNA1). Some transcripts detected have not been implicated in HSC functions, and others have unknown function so far. This work identifies new genes that might play a role in leukemogenesis and cancer stem cells. It also leads to a better description and understanding of the molecular phenotypes of these 2 cell populations. Hence, in addition to being a more efficient way to further understand the biology of LSC, this should also provide a more efficient way of identifying new therapeutics and diagnostic targets.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 222-222 ◽  
Author(s):  
Yi Lu ◽  
Huiqing Liu ◽  
Ying Xu ◽  
Pei Lin Koh ◽  
Ariffin Hany ◽  
...  

Abstract Early response to therapy is the most important prognostic factor for childhood ALL. CCG investigators have shown that Day-7 and Day-14 BM blast counts were prognostically important although there is great inter-observer variability. BFM group have shown that day 8 prednisolone (PRED) response is highly predictive of the treatment outcome. While gene expression profiling (GEP) of diagnostic marrow can discern a pattern of PRED sensitivity as determined by in vitro MTT assay, the accuracy was low at only 70%. We hypothesized that changes in global GEP after therapy have a higher likelihood to predict response as the signatures of sensitivity and resistance may be unmasked during the therapy. We prospectively studied the changes in GEP using Affymetrix HG-U133A or Plus 2 chips on paired BM samples before and after 7-day course of PRED and one dose IT MTX in 58 patients with newly diagnosed or relapsed ALL. Unsupervised hierarchical clustering revealed that pre- and post- PRED samples in the patients still tended to cluster together, indicating that expression profiles of molecular subgroups were still most important. To remove intrinsic influence of molecular subtypes and identify potential signatures independent of genetic abnormalities, we subtracted Day-0 GEP from its paired Day-8 profile and retained probe sets with significant changes (≥ 10-fold). To avoid the ambiguity of variation in BM blast counting at Day-8, we divided the samples into a stringently reproducible group where “Good” PRED response was defined as that Day-8 blast count in PBL < 109/L and BM lymphoblasts ≤ 30% (n=16). “Poor” response was when Day 8 PBL ≥ 109/L (n=11). This stringently reproducible group (n=27) formed the training group to help define a distinct signature while the rest (n=31 pairs) were used as a blinded test set. 54 and 19 discriminating genes were identified by 2 independent statistical methods respectively, and an integrated predictor model was constructed based on shortlisted entries. This model predicted the PRED response with 100% accuracy for the training set using the leave-one-out cross validation but was less accurate in predicting the BM blast count in blinded test set. But intriguingly, in the blinded test set, this model predicted correctly 19 out of 21 reliable “Good” PRED responses are in CCR (91%), while among 8 predicted as “Poor” responses, only 2 are in CCR (25%). This suggests that as gene expression profiling as early as day 8 of PRED could discern the beginning of leukaemia cell death even before morphological changes are discernable and is highly correlated to eventual outcome. In conclusion, we have shown that analyses on the relative changes of gene expression profile can identify real genetic signatures indicating the sensitivity to PRED administration which is highly correlated with outcome.


Sign in / Sign up

Export Citation Format

Share Document