Heat acclimation memory: do the kinetics of the deacclimated transcriptome predispose to rapid reacclimation and cytoprotection?

2014 ◽  
Vol 117 (11) ◽  
pp. 1262-1277 ◽  
Author(s):  
Anna Tetievsky ◽  
Miri Assayag ◽  
Rotem Ben-Hamo ◽  
Sol Efroni ◽  
Gal Cohen ◽  
...  

Faster reinduction of heat acclimation (AC) after its decline indicates “AC memory.” Our previous results revealed involvement of epigenetic mechanisms of transcriptional regulation. We hypothesized that the decline of AC (DeAC) is a period of “dormant memory” during which many processes are alerted to enable rapid reacclimation (ReAC). Using a genomewide approach we studied the AC, DeAC, and ReAC transcriptomes, to uncover hallmark pathways linked to “molecular memory” in the cardioacclimatome. Fifty rats subjected to heat acclimation [34°C for 2d (AC2d) or 30d (AC30)], DeAC (24°C, 30 days), ReAC (34°C, 2 days), and untreated controls were used. The GeneChip Rat Gene 1.0 ST Array was employed for left ventricular (cardiac) mRNA hybridization. Three independent bioinformatic analyses showed that 1) during AC2d enrichment of DNA impair/repair-linked genes is seen, and this is the molecular on-switch of acclimation; 2) genes activated in AC30 underlie the qualitative physiological adaptations of cardiac performance; 3) particular molecular programs encompassing constitutive upregulation of p38 MAPK, Jak/Stat, and Akt pathways and targets are specifically activated during DeAC and ReAC; and 4) epigenetic markers such as linker histones (histones H1 cluster), associated with nucleosome spacing, transcriptional chromatin modifiers, poly-(ADP-ribose) polymerase-1 (PARP1) linked to chromatin compaction, and microRNAs are only altered during DeAC/ReAC. The latter are newcomers to the AC/DeAC puzzle. We suggest that these transcriptional responses maintain euchromatin and proteostasis and enable faster physiological recovery upon ReAC by rapidly reestablishing the protected acclimated cardiophenotype. We propose that the cardiac AC model can be applied to acclimation processes in general.

1992 ◽  
Vol 73 (6) ◽  
pp. 2675-2680 ◽  
Author(s):  
E. Mellow ◽  
E. Redei ◽  
K. Marzo ◽  
J. R. Wilson

Stimulation of endogenous opiate secretion worsens circulatory dysfunction in several forms of shock, in part by inhibiting sympathetic activity. To investigate whether endogenous opiates have a similar effect in chronic heart failure (HF), we measured beta-endorphin concentrations and hemodynamic responses to naloxone infusion (2 mg/kg bolus + 2 mg.kg-1 x h-1) in six control (C) dogs and eight dogs with low-output HF produced by 3 wk of rapid ventricular pacing. The dogs with HF exhibited reduced arterial blood pressure (C, 123 +/- 4 vs. HF, 85 +/- 7 mmHg; P < 0.01) and cardiac outputs (C, 179 +/- 14 vs. HF, 76 +/- 2 ml.min-1 x kg-1; P < 0.01) and elevated plasma norepinephrine concentrations (C, 99 +/- 12 vs. HF, 996 +/- 178 pg/ml; P < 0.01) but normal beta-endorphin concentrations (C, 30 +/- 11 vs. HF, 34 +/- 12 pg/ml; P = NS). Naloxone produced similar transitory increases in blood pressure (C, 14 +/- 5 vs. HF, 26 +/- 25%) and cardiac output (C, 37 +/- 13 vs. HF, 22 +/- 15%) in both groups (both P = NS). No significant changes in norepinephrine concentration or systemic vascular resistance were observed in either group. These findings suggest that beta-endorphin secretion does not exacerbate circulatory dysfunction in chronic heart failure.


1986 ◽  
Vol 60 (1) ◽  
pp. 9-13 ◽  
Author(s):  
M. Horowitz ◽  
Y. Shimoni ◽  
S. Parnes ◽  
M. S. Gotsman ◽  
Y. Hasin

Cardiac performance was studied in the isolated perfused hearts of rats heat acclimated at 34 degrees C (AC) and their age-matched controls (C). The pressure-volume curves during isovolumetric conditions showed a shift to the right in AC compared with C hearts. At similar left ventricular (LV) volumes end-diastolic and peak systolic pressures of AC hearts were lower, but no difference was observed in the maximal pressure developed at the highest LV volumes measured. In both C and AC hearts the developed force decreased as pacing rate increased. AC and C heart responses were the same up to 250 pulses/min. At higher frequencies the amplitude of the developed force of AC hearts was smaller than that of the controls. In accordance the tension produced by very early premature beat reduced in AC compared with C hearts. Since no hypertrophy was observed in AC hearts, it is concluded that heat acclimation results in a change in the intrinsic properties of the AC hearts exhibited by increased compliance, reduced chamber stiffness, and a decrease in the tension developed for each volume load. It is also suggested that at a high beating rate AC hearts fail to restitute its contractility as quickly as C hearts.


1998 ◽  
Vol 84 (5) ◽  
pp. 1731-1739 ◽  
Author(s):  
Stephen S. Cheung ◽  
Tom M. McLellan

—The purpose of the present study was to determine the separate and combined effects of aerobic fitness, short-term heat acclimation, and hypohydration on tolerance during light exercise while wearing nuclear, biological, and chemical protective clothing in the heat (40°C, 30% relative humidity). Men who were moderately fit [(MF); <50 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 7] and highly fit [(HF); >55 ml ⋅ kg−1 ⋅ min−1maximal O2 consumption; n = 8] were tested while they were euhydrated or hypohydrated by ∼2.5% of body mass through exercise and fluid restriction the day preceding the trials. Tests were conducted before and after 2 wk of daily heat acclimation (1-h treadmill exercise at 40°C, 30% relative humidity, while wearing the nuclear, biological, and chemical protective clothing). Heat acclimation increased sweat rate and decreased skin temperature and rectal temperature (Tre) in HF subjects but had no effect on tolerance time (TT). MF subjects increased sweat rate but did not alter heart rate, Tre, or TT. In both MF and HF groups, hypohydration significantly increased Tre and heart rate and decreased the respiratory exchange ratio and the TT regardless of acclimation state. Overall, the rate of rise of skin temperature was less, while ΔTre, the rate of rise of Tre, and the TT were greater in HF than in MF subjects. It was concluded that exercise-heat tolerance in this uncompensable heat-stress environment is not influenced by short-term heat acclimation but is significantly improved by long-term aerobic fitness.


Author(s):  
Mary Kama ◽  
Kaul Gena ◽  
Tindi Seje Nuru

Magnetic skarn ore (MSO) is one of the major copper bearing ore extracted by the Ok Tedi Copper Mine in Papua New Guinea (PNG). Copper minerals are recovered by flotation while the iron not associated with copper are discarded as tailings. The objective of this investigation was to determine the iron ore reduction kinetics for the Ok Tedi MSO and ascertain if it can be processed to produce sponge iron for a mini steel plant in Papua New Guinea. SEM-EDAX analyses of the Ok Tedi MSO indicated 10.1% C, 30% O, 0.6% Mg, 1.1% Si, 21.1% S, 0.8% Ca and 36.2 % Fe. Most of the iron is in sulfide form. Both naturally occurring and roasted sinters of Ok Tedi MSO samples of different particle sizes were reduced by charcoal carbon at three different temperatures and seven different reduction times. Analyses of the reduced products indicated a metallic iron content of more than 65 wt. % on average. Results showed that there was no significant difference in reduction between fluxed and control materials. Only a slight increase in kinetics with reduced particle size, hence the reaction rate constant (K) did not vary much within the temperatures investigated. Reaction kinetics increases with increasing reduction time at 900°C. Therefore, more iron reduction is observed with particles of 106 µm size. In addition, the results also confirmed that the reduction energy used was higher at 800°C and lower at 1000°C. In conclusion, iron reduction can be improved but close monitoring of temperature and reduction times are essential to determine the reaction kinetics of the Ok Tedi MSO.


2004 ◽  
Vol 287 (4) ◽  
pp. H1857-H1867 ◽  
Author(s):  
Michael Weiss ◽  
Myoungki Baek ◽  
Wonku Kang

To gain more insight into the mechanistic processes controlling the kinetics of inotropic response of digoxin in the perfused whole heart, an integrated kinetic model was developed incorporating digoxin uptake, receptor binding (Na+-K+-ATPase inhibition), and cellular events linking receptor occupation and response. The model was applied to data obtained in the single-pass Langendorff-perfused rat heart for external [Ca2+] of 0.5 and 1.5 mM under control conditions and in the presence of the reverse-mode Na+/Ca2+ exchange inhibitor KB-R7943 (0.1 μM) in perfusate. Outflow concentration and left ventricular developed pressure data measured for three consecutive doses (15, 30, and 45 μg) in each heart were analyzed simultaneously. While disposition kinetics of digoxin was determined by interaction with a heterogeneous receptor population consisting of a high-affinity/low-capacity and a low-affinity/high- capacity binding site, response generation was >80% mediated by binding to the high-affinity receptor. Digoxin sensitivity increased at lower external [Ca2+] due to higher stimulus amplification. Coadministration of KB-R7943 significantly reduced the positive inotropic effect of digoxin at higher doses (30 and 45 μg) and led to a saturated and delayed receptor occupancy-response relationship in the cellular effectuation model. The results provide further evidence for the functional heterogeneity of the Na+-K+-ATPase and suggest that in the presence of KB-R7943 a reduction of the Ca2+ influx rate via the reverse mode Na+/Ca2+ exchanger might become the limiting factor in digoxin response generation.


2020 ◽  
Vol 120 (9) ◽  
pp. 2001-2002
Author(s):  
Alexandros Sotiridis ◽  
Tadej Debevec ◽  
Nickos Geladas ◽  
Igor B. Mekjavic

2014 ◽  
Vol 46 ◽  
pp. 657
Author(s):  
Travis DiLeo ◽  
Jeffrey Powell ◽  
Raymond Roberge ◽  
Aitor Coca ◽  
Kim Jung-Hyun

2017 ◽  
Vol 262 ◽  
pp. 668-672 ◽  
Author(s):  
Emmanuel Ngoma ◽  
Kathija Shaik ◽  
Danilo Borja ◽  
Mariette Smart ◽  
Jay Hyun Park ◽  
...  

The aim of this study was to investigate the microbial colonization and arsenic leaching kinetics of South Korean mine tailings containing arsenopyrite at fixed temperatures (20°C, 30°C and 45°C) and at ramped up temperatures (25 to 45°C, with a 2°C daily increase). The experiments were conducted in a packed bed of inert granite pebbles coated with the tailings material and leached with a mesophilic culture dominated by Acidithiobacillus caldus (56%), a lesser percentage of Leptospirillum ferriphilum (29%) and Archaea (15%), using 1 g/L ferrous-enriched 0K medium. The ramped-up temperature experiment was conducted in triplicate and columns were sacrificed after different leach periods to study the evolution of microbial species dominating the colonization. The leaching performance was evaluated using the arsenic released into solution, the iron oxidation rates, the pH and the redox potential. The microbial speciation of the culture attached to the solids during the leach experiment was determined upon completion of each experiment. A steady arsenic solubilisation of between 94 and 97% was observed among the various column experiment after 88 days post inoculation. Microbial speciation performed following the leaching of the mineral indicated a shift of microbial communities in the columns when compared to the initial inoculum.


Sign in / Sign up

Export Citation Format

Share Document