Aging alters the contribution of nitric oxide to regional muscle hemodynamic control at rest and during exercise in rats

2011 ◽  
Vol 111 (4) ◽  
pp. 989-998 ◽  
Author(s):  
Daniel M. Hirai ◽  
Steven W. Copp ◽  
K. Sue Hageman ◽  
David C. Poole ◽  
Timothy I. Musch

Advanced age is associated with altered skeletal muscle hemodynamic control during the transition from rest to exercise. This study investigated the effects of aging on the functional role of nitric oxide (NO) in regulating total, inter-, and intramuscular hindlimb hemodynamic control at rest and during submaximal whole body exercise. We tested the hypothesis that NO synthase inhibition ( N G-nitro-l-arginine methyl ester, l-NAME; 10 mg/kg) would result in attenuated reductions in vascular conductance (VC) primarily in oxidative muscles in old compared with young rats. Total and regional hindlimb muscle VCs were determined via radiolabeled microspheres at rest and during treadmill running (20 m/min, 5% grade) in nine young (6–8 mo) and seven old (27–29 mo) male Fisher 344 × Brown Norway rats. At rest, l-NAME increased mean arterial pressure (MAP) significantly by ∼17% and 21% in young and old rats, respectively. During exercise, l-NAME increased MAP significantly by ∼13% and 19% in young and old rats, respectively. Compared with young rats, l-NAME administration in old rats evoked attenuated reductions in 1) total hindlimb VC during exercise (i.e., down by ∼23% in old vs. 43% in young rats; P < 0.05), and 2) VC in predominantly oxidative muscles both at rest and during exercise ( P < 0.05). Our results indicate that the dependency of highly oxidative muscles on NO-mediated vasodilation is markedly diminished, and therefore mechanisms other than NO-mediated vasodilation control the bulk of the increase in skeletal muscle VC during the transition from rest to exercise in old rats. Reduced NO contribution to vasomotor control with advanced age is associated with blood flow redistribution from highly oxidative to glycolytic muscles during exercise.

1987 ◽  
Vol 63 (1) ◽  
pp. 257-261 ◽  
Author(s):  
G. D. Cartee ◽  
R. P. Farrar

Old rats have a decreased hindlimb muscle respiratory capacity and whole-body maximal O2 consumption (VO2 max). The decline in spontaneous physical activity in old rats might contribute to these age-related changes. The magnitude of the age-related decline is not uniform in all skeletal muscle respiratory enzymes, and the decrease in palmitate oxidation is particularly great. This study was designed to determine if young and old rats subjected to the same exercise-training protocol would attain similar values for VO2 max and several markers of muscle respiratory capacity. Four- and 18-mo-old Fischer 344 rats underwent an identical 6-mo program of treadmill running. After training, both age groups had increased VO2 max above sedentary age-matched controls. However, the old trained rats had a lower VO2 max than identically trained young rats. In contrast to VO2 max, the two trained groups attained similar values for gastrocnemius citrate synthase, cytochrome oxidase, 3-hydroxyacyl-CoA dehydrogenase, palmitate oxidation, and total carnitine concentration. Thus, when the young and old rats performed an identical exercise protocol within the capacity of the old animals, differences in skeletal muscle respiratory capacity were eliminated. The dissimilarity in VO2 max between the identically trained groups was apparently caused by age-related differences in factors other than muscle respiratory capacity.


2007 ◽  
Vol 292 (6) ◽  
pp. H3119-H3127 ◽  
Author(s):  
Scott A. Spier ◽  
Michael D. Delp ◽  
John N. Stallone ◽  
James M. Dominguez ◽  
Judy M. Muller-Delp

Flow-induced vasodilation is attenuated with old age in rat skeletal muscle arterioles. The purpose of this study was to determine whether diminished cyclooxygenase (COX) signaling contributes to the age-induced attenuation of flow-induced vasodilation in gastrocnemius muscle arterioles and to determine whether, and through which mechanism(s), exercise training restores this deficit in old rats. Fischer 344 rats (3 and 22 mo old) were assigned to a sedentary or exercise-trained group. First-order arterioles were isolated from the gastrocnemius muscles, cannulated, and pressurized to 70 cmH2O. Diameter changes were determined in response to graded increases in intraluminal flow in the presence and absence of nitric oxide synthase (NOS) inhibition [10−5 M NG-nitro-l-arginine methyl ester (l-NAME)], COX inhibition (10−5 M indomethacin), or combination NOS (10−5 Ml-NAME) plus COX (10−5 M indomethacin) inhibition. Aging reduced flow-induced vasodilation in gastrocnemius muscle arterioles. Exercise training restored responsiveness to flow in arterioles of aged rats and enhanced flow-induced vasodilation in arterioles from young rats. l-NAME inhibition of flow-induced vasodilation was greater in arterioles from old rats compared with those from young rats and was increased after exercise training in arterioles from both young and old rats. Although the indomethacin-sensitive portion of flow-induced dilation was not altered by age or training, both COX-1 mRNA expression and PGI2 production increased with training in arterioles from old rats. These data demonstrate that exercise training restores flow-induced vasodilation in gastrocnemius muscle arterioles from old rats and enhances flow-induced vasodilation in gastrocnemius muscle arterioles from young rats. In arterioles from both old and young rats, the exercise training-induced enhancement of flow-induced dilation occurs primarily through a NOS mechanism.


2002 ◽  
Vol 93 (1) ◽  
pp. 242-250 ◽  
Author(s):  
James A. Carson ◽  
Won Jun Lee ◽  
Joseph McClung ◽  
Gregory A. Hand

Skeletal muscle is a target of anabolic steroid action; however, anabolic steroid's affect on aged skeletal muscle is not well understood. The effect of 4 wk of nandrolone decanoate (ND) administration on hindlimb muscles of 5- and 25-mo-old Fischer 344/Brown Norway rats was examined. ND (6 mg/kg body wt) was injected every 7th day for 4 wk. Controls received an oil injection. ND significantly reduced 25-mo-old rat perirenal fat pad mass by 30%. Soleus (Sol) and plantaris (Plan) muscle-to-body weight ratios were reduced in 25-mo-old rats. ND did not affect Sol or Plan muscle-to-body weight ratios at either age. Sol DNA concentration was reduced by 25% in 25-mo-old rats, and ND increased it to 12% greater than 5-mo-old rats. ND did not affect Plan DNA content. Sol androgen receptor (AR) protein in 25-mo-old rats was reduced to 35% of 5-mo-old values. ND increased AR protein by 900% in 25-mo-old rat Sol. Plan AR concentration was not affected by aging but was induced by ND in both age groups. Aging or ND treatment did not affect glucocorticoid receptor levels in either muscle. These data demonstrate that fast- and slow-twitch rat hindlimb muscles differ in their response to aging and ND therapy.


2013 ◽  
Vol 114 (4) ◽  
pp. 472-481 ◽  
Author(s):  
Heidi Kletzien ◽  
John A. Russell ◽  
Glen E. Leverson ◽  
Nadine P. Connor

Age-associated changes in tongue muscle structure and strength may contribute to dysphagia in elderly people. Tongue exercise is a current treatment option. We hypothesized that targeted tongue exercise and nontargeted exercise that activates tongue muscles as a consequence of increased respiratory drive, such as treadmill running, are associated with different patterns of tongue muscle contraction and genioglossus (GG) muscle biochemistry. Thirty-one young adult, 34 middle-aged, and 37 old Fischer 344/Brown Norway rats received either targeted tongue exercise, treadmill running, or no exercise (5 days/wk for 8 wk). Protrusive tongue muscle contractile properties and myosin heavy chain (MHC) composition in the GG were examined at the end of 8 wk across groups. Significant age effects were found for maximal twitch and tetanic tension (greatest in young adult rats), MHCIIb (highest proportion in young adult rats), MHCIIx (highest proportion in middle-aged and old rats), and MHCI (highest proportion in old rats). The targeted tongue exercise group had the greatest maximal twitch tension and the highest proportion of MHCI. The treadmill running group had the shortest half-decay time, the lowest proportion of MHCIIa, and the highest proportion of MHCIIb. Fatigue was significantly less in the young adult treadmill running group and the old targeted tongue exercise group than in other groups. Thus, tongue muscle structure and contractile properties were affected by both targeted tongue exercise and treadmill running, but in different ways. Studies geared toward optimizing dose and manner of providing targeted and generalized tongue exercise may lead to alternative tongue exercise delivery strategies.


1999 ◽  
Vol 87 (1) ◽  
pp. 465-470 ◽  
Author(s):  
J. Bejma ◽  
L. L. Ji

Reactive oxygen species (ROS) are implicated in the mechanism of biological aging and exercise-induced oxidative damage. The present study examined the effect of an acute bout of exercise on intracellular ROS production, lipid and protein peroxidation, and GSH status in the skeletal muscle of young adult (8 mo, n = 24) and old (24 mo, n = 24) female Fischer 344 rats. Young rats ran on a treadmill at 25 m/min and 5% grade until exhaustion (55.4 ± 2.7 min), whereas old rats ran at 15 m/min and 5% grade until exhaustion (58.0 ± 2.7 min). Rate of dichlorofluorescin (DCFH) oxidation, an indication of ROS and other intracellular oxidants production in the homogenate of deep vastus lateralis, was 77% ( P < 0.01) higher in rested old vs. young rats. Exercise increased DCFH oxidation by 38% ( P < 0.09) and 50% ( P < 0.01) in the young and old rats, respectively. DCFH oxidation in isolated deep vastus lateralis mitochondria with site 1 substrates was elevated by 57% ( P < 0.01) in old vs. young rats but was unaltered with exercise. Significantly higher DCFH oxidation rate was also found in aged-muscle mitochondria ( P < 0.01), but not in homogenates, when ADP, NADPH, and Fe3+ were included in the assay medium without substrates. Lipid peroxidation in muscle measured by malondialdehyde content showed no age effect, but was increased by 20% ( P < 0.05) with exercise in both young and old rats. Muscle protein carbonyl formation was unaffected by either age or exercise. Mitochondrial GSH/ GSSG ratio was significantly higher in aged vs. young rats ( P < 0.05), whereas exercise increased GSSG content and decreased GSH/GSSG in both age groups ( P < 0.05). These data provided direct evidence that oxidant production in skeletal muscle is increased in old age and during prolonged exercise, with both mitochondrial respiratory chain and NADPH oxidase as potential sources. The alterations of muscle lipid peroxidation and mitochondrial GSH status were consistent with these conclusions.


2009 ◽  
Vol 107 (4) ◽  
pp. 1249-1257 ◽  
Author(s):  
Jae Hyung Kim ◽  
Lukasz J. Bugaj ◽  
Young Jun Oh ◽  
Trinity J. Bivalacqua ◽  
Sungwoo Ryoo ◽  
...  

There is increasing evidence that upregulation of arginase contributes to impaired endothelial function in aging. In this study, we demonstrate that arginase upregulation leads to endothelial nitric oxide synthase (eNOS) uncoupling and that in vivo chronic inhibition of arginase restores nitroso-redox balance, improves endothelial function, and increases vascular compliance in old rats. Arginase activity in old rats was significantly increased compared with that shown in young rats. Old rats had significantly lower nitric oxide (NO) and higher superoxide (O2−) production than young. Acute inhibition of both NOS, with NG-nitro-l-arginine methyl ester, and arginase, with 2( S)-amino- 6-boronohexanoic acid (ABH), significantly reduced O2− production in old rats but not in young. In addition, the ratio of eNOS dimer to monomer in old rats was significantly decreased compared with that shown in young rats. These results suggest that eNOS was uncoupled in old rats. Although the expression of arginase 1 and eNOS was similar in young and old rats, inducible NOS (iNOS) was significantly upregulated. Furthermore, S-nitrosylation of arginase 1 was significantly elevated in old rats. These findings support our previously published finding that iNOS nitrosylates and activates arginase 1 (Santhanam et al., Circ Res 101: 692–702, 2007). Chronic arginase inhibition in old rats preserved eNOS dimer-to-monomer ratio and significantly reduced O2− production and enhanced endothelial-dependent vasorelaxation to ACh. In addition, ABH significantly reduced vascular stiffness in old rats. These data indicate that iNOS-dependent S-nitrosylation of arginase 1 and the increase in arginase activity lead to eNOS uncoupling, contributing to the nitroso-redox imbalance, endothelial dysfunction, and vascular stiffness observed in vascular aging. We suggest that arginase is a viable target for therapy in age-dependent vascular stiffness.


2013 ◽  
Vol 305 (12) ◽  
pp. R1498-R1505 ◽  
Author(s):  
Robert L. Thunhorst ◽  
Terry G. Beltz ◽  
Alan Kim Johnson

This work examined the effects of age on salt appetite measured in the form of daily saline (i.e., 0.3 M NaCl) drinking in response to administration of deoxycorticosterone acetate (DOCA; 5 mg/kg body wt) using young (4 mo), “middle-aged” adult (12 mo), and old (30 mo) male Brown Norway rats. Water and sodium intakes, excretions, and balances were determined daily. The salt appetite response was age dependent with “middle-aged” rats ingesting the most saline solution followed in order by young and then old rats. While old rats drank the least saline solution, the amounts of saline ingested still were copious and comprise an unambiguous demonstration of salt appetite in old rats. Middle-aged rats had the highest saline preference ratios of the groups under baseline conditions and throughout testing consistent with an increased avidity for sodium taste. There were age differences in renal handling of water and sodium that were consistent with a renal contribution to the greater saline intakes by middle-aged rats. There was evidence of impaired renal function in old rats, but this did not account for the reduced saline intakes of the oldest rats.


2019 ◽  
Vol 126 (4) ◽  
pp. 1074-1087 ◽  
Author(s):  
Marshall A. Naimo ◽  
Erik P. Rader ◽  
James Ensey ◽  
Michael L. Kashon ◽  
Brent A. Baker

The purpose of this study was to characterize the growth and remodeling molecular signaling response in aged skeletal muscle following 1 mo of “resistance-type exercise” training. Male Fischer 344 × Brown Norway hybrid rats aged 3 (young) and 30 mo (old) underwent stretch-shortening contraction (SSC) loading 2 or 3 days/wk; muscles were removed 72 h posttraining. Young rats SSC loaded 3 (Y3x) or 2 days/wk (Y2x) adapted via increased work performance. Old rats SSC loaded 3 days/wk (O3x) maladapted via decreased negative work; however, old rats SSC loaded 2 days/wk (O2x) adapted through improved negative and positive work. Y3x, Y2x, and O2x, but not O3x, displayed hypertrophy via larger fiber area and myonuclear domains. Y3x, Y2x, and O2x differentially expressed 19, 30, and 8 phosphatidylinositol 3-kinase-Akt genes, respectively, whereas O3x only expressed 2. Bioinformatics analysis revealed that rats in the adapting groups presented growth and remodeling processes (i.e., increased protein synthesis), whereas O3x demonstrated inflammatory signaling. In conclusion, reducing SSC-loading frequency in aged rodents positively influences the molecular signaling microenvironment, promoting muscle adaptation. NEW & NOTEWORTHY Decreasing resistance-type exercise training frequency in old rodents led to adaptation through enhancements in performance, fiber areas, and myonuclear domains. Modifying frequency influenced the molecular environment through improvements in phosphatidylinositol 3-kinase-Akt pathway-specific expression and bioinformatics indicating increased protein synthesis. Reducing training frequency may be appropriate in older individuals who respond unfavorably to higher frequencies (i.e., maladaptation); overall, modifying the parameters of the exercise prescription can affect the cellular environment, ultimately leading to adaptive or maladaptive outcomes.


2013 ◽  
Vol 74 (11) ◽  
pp. 1433-1442 ◽  
Author(s):  
Ashley L. Wagner ◽  
Kristine L. Urschel ◽  
Alejandra Betancourt ◽  
Amanda A. Adams ◽  
David W. Horohov

1998 ◽  
Vol 85 (5) ◽  
pp. 1903-1908 ◽  
Author(s):  
Ronald R. Gomes ◽  
Frank W. Booth

We examined the age-related association in skeletal muscle between atrophy and expression of mRNAs encoding both the γ-subunit of the nicotinic acetylcholine receptor (AChR), and myogenin, a transcription factor that upregulates expression of the γ-subunit promoter. Gastrocnemius and biceps brachii muscles were collected from young (2-mo-old), adult (18-mo-old), and old (31-mo-old) Fischer 344/Brown Norway F1 generation cross male rats. In the gastrocnemius muscles of old vs. young and adult rats, lower muscle mass was accompanied by significantly elevated AChR γ-subunit and myogenin mRNA levels. In contrast, the biceps brachii muscle exhibited neither atrophy nor as drastic a change in AChR γ-subunit and myogenin mRNA levels with age. Expression of the AChR ε-subunit mRNA did not change with age in either gastrocnemius or biceps brachii muscles. Thus changes in skeletal muscle AChR γ-subunit and myogenin mRNA levels may be more related to atrophy than to chronological age in old rats.


Sign in / Sign up

Export Citation Format

Share Document