scholarly journals The combination of smoking with vitamin D deficiency impairs skeletal muscle fiber hypertrophy in response to overload in mice

Author(s):  
Ajime Tom Tanjeko ◽  
Jef Serré ◽  
Rob C.I. Wüst ◽  
Jatin G. Burniston ◽  
Karen Maes ◽  
...  

Vitamin D deficiency, which is highly prevalent in the general population, exerts similar deleterious effects on skeletal muscles to those induced by cigarette smoking. We examined whether cigarette smoke (CS) exposure and/or vitamin D deficiency impairs the skeletal muscle hypertrophic response to overload. Male C57Bl/6JolaH mice on a normal or vitamin D-deficient diet were exposed to CS or room air for 18 weeks. Six weeks after initiation of CS or air exposure, sham surgery or denervation of the agonists of the left plantaris muscle was performed. The right leg served as internal control. Twelve weeks later, the hypertrophic response was assessed. CS exposure instigated loss of body and muscle mass, and increased lung inflammatory cell infiltration (p<0.05), independently of diet. Maximal exercise capacity, whole body strength, in situ plantaris muscle force and key markers of hypertrophic signaling (Akt, 4EBP1, FoxO1) were not significantly affected by smoking or diet. The increase in plantaris muscle fiber cross-sectional area in response to overload was attenuated in vitamin D-deficient CS-exposed mice (smoking x diet interaction for hypertrophy, p=0.03). In situ fatigue resistance was elevated in hypertrophied plantaris, irrespective of vitamin D deficiency and/or CS exposure. In conclusion, our data show that CS exposure or vitamin D deficiency alone did not attenuate the hypertrophic response of overloaded plantaris muscles, but this hypertrophic response was weakened when both conditions were combined. These data suggest that current smokers who also present with vitamin D deficiency may be less likely to respond to a training program.

2020 ◽  
Author(s):  
Emma L Watson ◽  
Thomas J Wilkinson ◽  
Tom F O’Sullivan ◽  
Luke A Baker ◽  
Douglas W Gould ◽  
...  

AbstractEvidence is growing for a role of vitamin D in regulating skeletal muscle mass, strength and functional capacity. Given the role the kidneys play in activating total vitamin D, and the high prevalence of vitamin D deficiency in Chronic Kidney Disease (CKD), it is possible that deficiency contributes to the low levels of physical function and muscle mass in these patients. This is a secondary cross-sectional analysis of previously published interventional study, with ex vivo follow up work. 34 CKD patients at stages G3b-5 (eGFR 25.5 ± 8.3ml/min/1.73m2; age 61 ± 12 years) were recruited, with a sub-group (n=20) also donating a muscle biopsy. Vitamin D and associated metabolites were analysed in plasma by liquid chromatography tandem-mass spectroscopy and correlated to a range of physiological tests of muscle size, function, exercise capacity and body composition. The effects of 1α,25(OH)2D3 supplementation on myogenesis and myotube size was investigated in primary skeletal muscle cells from vitamin D deficient donors. In vivo, there was no association between total or active vitamin D and muscle size or strength, but a significant correlation with was seen with the total form. Ex vivo, 1α,25(OH)2D3 supplementation reduced IL-6 mRNA expression, but had no effect upon proliferation, differentiation or myotube diameter. This early preliminary work suggests that vitamin D deficiency is not a prominent factor driving the loss of muscle mass in CKD, but may play a role in reduced exercise capacity.


2011 ◽  
Vol 31 (39) ◽  
pp. 13728-13738 ◽  
Author(s):  
S. E. Tague ◽  
G. L. Clarke ◽  
M. K. Winter ◽  
K. E. McCarson ◽  
D. E. Wright ◽  
...  

2015 ◽  
Vol 31 (3) ◽  
pp. 585-595 ◽  
Author(s):  
Songcang Chen ◽  
S Armando Villalta ◽  
Devendra K Agrawal

2013 ◽  
Vol 73 (1) ◽  
pp. 16-33 ◽  
Author(s):  
Ailsa A. Welch

Age-related muscle loss impacts on whole-body metabolism and leads to frailty and sarcopenia, which are risk factors for fractures and mortality. Although nutrients are integral to muscle metabolism the relationship between nutrition and muscle loss has only been extensively investigated for protein and amino acids. The objective of the present paper is to describe other aspects of nutrition and their association with skeletal muscle mass. Mechanisms for muscle loss relate to imbalance in protein turnover with a number of anabolic pathways of which the mechanistic TOR pathway and the IGF-1–Akt–FoxO pathways are the most characterised. In terms of catabolism the ubiquitin proteasome system, apoptosis, autophagy, inflammation, oxidation and insulin resistance are among the major mechanisms proposed. The limited research associating vitamin D, alcohol, dietary acid–base load, dietary fat and anti-oxidant nutrients with age-related muscle loss is described. Vitamin D may be protective for muscle loss; a more alkalinogenic diet and diets higher in the anti-oxidant nutrients vitamin C and vitamin E may also prevent muscle loss. Although present recommendations for prevention of sarcopenia focus on protein, and to some extent on vitamin D, other aspects of the diet including fruits and vegetables should be considered. Clearly, more research into other aspects of nutrition and their role in prevention of muscle loss is required.


2020 ◽  
Vol 10 (16) ◽  
pp. 5592
Author(s):  
Clara Crescioli

The concept that extra-skeletal functions of vitamin D impact on human health have taken place since quite ago. Among all, the beneficial effects of vitamin D on immune regulation, skeletal muscle function, and metabolism are undeniable. Adequate vitamin D levels maintain the immune system and skeletal muscle metabolism integrity, promoting whole-body homeostasis; hypovitaminosis D associates with the important decline of both tissues and promotes chronic inflammation, which is recognized to underlie several disease developments. Growing evidence shows that the immune system and skeletal muscle reciprocally dialogue, modulating each other’s function. Within this crosstalk, vitamin D seems able to integrate and converge some biomolecular signaling towards anti-inflammatory protective effects. Thus, vitamin D regulation appears even more critical at the immune system-muscle signaling intersection, rather than at the single tissue level, opening to wider/newer opportunities in clinical applications to improve health. This paper aims to focus on the immune system-skeletal muscle interplay as a multifaceted target for vitamin D in health and disease after recalling the main regulatory functions of vitamin D on those systems, separately. Some myokines, particularly relevant within the immune system/skeletal muscle/vitamin D networking, are discussed. Since vitamin D supplementation potentially offers the opportunity to maintain health, comments on this issue, still under debate, are included.


2014 ◽  
Vol 11 (1) ◽  
pp. 47 ◽  
Author(s):  
Carla Domingues-Faria ◽  
Audrey Chanet ◽  
Jérôme Salles ◽  
Alexandre Berry ◽  
Christophe Giraudet ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document