scholarly journals Neuromuscular electrical stimulation improves skeletal muscle regeneration through satellite cell fusion with myofibers in healthy elderly subjects

2017 ◽  
Vol 123 (3) ◽  
pp. 501-512 ◽  
Author(s):  
Ester Sara Di Filippo ◽  
Rosa Mancinelli ◽  
Mariangela Marrone ◽  
Christian Doria ◽  
Vittore Verratti ◽  
...  

The aim of this study was to determine whether neuromuscular electrical stimulation (NMES) affects skeletal muscle regeneration through a reduction of oxidative status in satellite cells of healthy elderly subjects. Satellite cells from the vastus lateralis skeletal muscle of 12 healthy elderly subjects before and after 8 wk of NMES were allowed to proliferate to provide myogenic populations of adult stem cells [myogenic precursor cells (MPCs)]. These MPCs were then investigated in terms of their proliferation, their basal cytoplasmic free Ca2+concentrations, and their expression of myogenic regulatory factors ( PAX3, PAX7, MYF5, MYOD, and MYOG) and micro-RNAs (miR-1, miR-133a/b, and miR-206). The oxidative status of these MPCs was evaluated through superoxide anion production and superoxide dismutase and glutathione peroxidase activities. On dissected single skeletal myofibers, the nuclei were counted to determine the myonuclear density, the fiber phenotype, cross-sectional area, and tension developed. The MPCs obtained after NMES showed increased proliferation rates along with increased cytoplasmic free Ca2+concentrations and gene expression of MYOD and MYOG on MPCs. Muscle-specific miR-1, miR-133a/b, and miR-206 were upregulated. This NMES significantly reduced superoxide anion production, along with a trend to reduction of superoxide dismutase activity. The NMES-dependent stimulation of muscle regeneration enhanced satellite cell fusion with mature skeletal fibers. NMES improved the regenerative capacity of skeletal muscle in elderly subjects. Accordingly, the skeletal muscle strength and mobility of NMES-stimulated elderly subjects significantly improved. NMES may thus be further considered for clinical or ageing populations.NEW & NOTEWORTHY The neuromuscular electrical stimulation (NMES) effect on skeletal muscle regeneration was assessed in healthy elderly subjects for the first time. NMES improved the regenerative capacity of skeletal muscle through increased myogenic precursor cell proliferation and fusion with mature myofibers. The increased cytoplasmic free Ca2+concentration along with MYOD, MYOG, and micro-RNA upregulation could be related to reduced O2·−production, which, in turn, favors myogenic regeneration. Accordingly, the skeletal muscle strength of NMES-stimulated lower limbs of healthy elderly subjects improved along with their mobility.

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Aishan Liu ◽  
Xuelin Zhang ◽  
Mingliang Duan ◽  
Jingjing Ding

Objective  In this study, the Non-invasive Micro-test Technique was adopted to study the dynamic changes of Ca2+, Na+ , H2O2 flux during the early phase of skeletal muscle regeneration (0–24 h post-injury) after acupuncture intervention, and to explore the role of interaction between TRP channel and NADPH oxidase 2(NOX2) in the acupuncture mechanism. Methods  324 healthy male Wistar rats were randomly divided into 6 groups: blank control group (C), electrical stimulation group (E), electrical stimulation group with acupuncture intervention (EA), electrical stimulation gropu with acupuncture +TRP channel inhibitor (EAT ), electrical stimulation gropu with acupuncture + NOX2 inhibitor (EAN), electrical stimulation gropu with acupuncture + placebo (EAP). Except for group C, the animal model of eccentric induced skeletal muscle injury  was established by electrostimulation on gastrocnemius of anaesthetised rats in vivo.Immediately after electrical stimulation, GdCl3, apocynin and PBS buffer were injected by tail vein in EAT, EAN and EAP respectively. After 30 min, gastrocnemius muscle belly were stuck with acupuncture needles (diameter of 0.13 mm) in EA, EAT, EAN and EAP respectively. Shortly afterwards, a special polypropylene ring-shaped perforated vessel wall was sutured to the exposed gastrocnemius muscle, and to measure Ca2+, Na+, H2O2 fluxes by non-invasive micro-test technique in the phase of retaining needle, needle drawing immediately, 3h, 6h and 24h, respectively. The phase and time of detection in the C and E groups were consistented. Results  1 When the gastrocnemius muscle was in a resting state, Ca2+ and Na+ were influx in small amounts, and H2O2 had a small eflux. 2 Effect of eccentric Exercise and acupuncture on the dynamic changes of Ca2+ flux at different phases : ① In the E, a small eflux occurred at 0min, 10min and 3h, and the eflux suddenly increased significantly at 6 h (p<0.05), followed by a small eflux at 24h; ② In the EA, a small eflux occurred during retaining needle and needle drawing immediately, and Surprisingly, a small influx was observed at 3h. After that, the eflux increased suddenly at 6h and 24h, and the eflux peaked at 24h, which was significantly different from the E group at 24h. (p<0.05); ③ The EAT showed a significant influx trend. Specifically, except a small eflux in the retention period and 3h phase, significant influx occurred immediately after the needle pulling、6h and 24h. Compared with C and EA, there was no statistically significant difference in net flux (influx and efflux), but Ca2+ oscillation amplitude (influx and eflux fluctuation amplitude) in EAT was significantly increased (p<0.001, p<0.01, respectively); ④ In EAN, the eflux was dominant. Specifically, there was significant influx in the retention period and immediately after needle pulling, and suddenly significant eflux was observed at 3h and 6h. The 6h phase was significant difference than that of E (p<0.05), afterwards, the eflux was significantly decreased at 24h, and was significantly different from 6h (p<0.05); ⑤ The EAP flowed outward at all phases, and the overall trend was similar to the E group. The eflux peaked at needle drawing immediately, which was significantly different from that of the concurrent phase E and EA (p<0.05), and the eflux was significantly decreased at 24h. 3 Effect of eccentric exercise and acupuncture on the dynamic changes of Na+ flux at different phases : ① In the E, the eflux occurred at during retaining needle and needle drawing immediately, and the influx occurred suddenly at 3h and 6h. There was a significant difference between 6h and the C (p<0.001), and the eflux again occurred at 24h;② In the EA, the flux occurred during retaining needle and needle drawing immediately, and after that, efflux occurred at the 3h, 6h, and 24h;③ The EAT efflux at all phases was in line with the trend of changes in the E. ④ The EAN only eflux at 6h (p<0.05), while the rest of the phases flowed inward, and the influx peaked at 3h, which was significantly different from that at needle drawing immediately (p<0.05). The influx amplitude decreased at 24h, showing a significant difference from 3h (p<0.01). ⑤ The EAP only flowed inward at 3h, and the rest of the phases flowed outward. 4 Effect of eccentric exercise and acupuncture on the dynamic changes of H2O2 flux at different phases : ① In the E, the influx occurred only at 10 min, and the rest of the phases flowed outward with an increasing trend. The peak value were reached at 24h, showing a significant difference with C group and 0 min(p<0.01), and extremely significant with 3h (p<0.001) and 6h (p<0.05);② EA only flowed inward during retaining needle, all other phases flowed outward and peaked at 24h, but the eflux was less than that of E and there was a significant difference at 6h with E (p<0.05);③ The EAT group flowed outward at all phases and reached the peak at 3h, showing a significant difference compared with the E and EA at the same phases (p<0.001); ④The EAN flowed outward at each time phase and peaking needle drawing immediately, but the flow velocity was higher than that of the EAT. There was an extremely significant difference compared with EA at the peaking phase (P<0.001) and a significant difference with EAT at the same phase (p<0.05);⑤ In the EAP, all phases flowed outward, but the flow rate was less than the EAT and EAN. Conclusions  1  In the early subsequent phase of skeletal muscle regeneration, Ca2+ efflux  decreased, while Na+ influx increased, accompanied by increased H2O2 efflux. 2  Acupuncture intervention increased Ca2+ efflux in the early subsequent phase of skeletal muscle regeneration and advanced the Na+ influx phase, with the decrease of H2O2 efflux, and the effect was related to the interaction of TRP channels synergize with NOX2 Activity.


2017 ◽  
pp. 1-14 ◽  
Author(s):  
M. M. ZIAALDINI ◽  
S. R. A. HOSSEINI ◽  
M. FATHI

The aging process is associated with a decline in mitochondrial functions. Mitochondria dysfunction is involved in initiation and progression of many health problems including neuromuscular, metabolic and cardiovascular diseases. It is well known that endurance exercise improves mitochondrial function, especially in the elderly. However, recent studies have demonstrated that resistance training lead also to substantial increases in mitochondrial function in skeletal muscle. A comprehensive understanding of the cellular mechanisms involved in the skeletal muscle mitochondrial adaptations to exercise training in healthy elderly subjects, can help practitioners to design and prescribe more effective exercise trainings.


FEBS Journal ◽  
2013 ◽  
Vol 280 (17) ◽  
pp. 4118-4130 ◽  
Author(s):  
Marielle Saclier ◽  
Sylvain Cuvellier ◽  
Mélanie Magnan ◽  
Rémi Mounier ◽  
Bénédicte Chazaud

2021 ◽  
Author(s):  
Jonas Brorson Jensen ◽  
Ole Lindgaard Dollerup ◽  
Andreas Buch Moeller ◽  
Tine Borum Billeskov ◽  
Emilie Dalbram ◽  
...  

Background Maintenance and regeneration of functional skeletal muscle are dependent on a sufficient pool of muscle stem cells (MuSCs). During ageing there is a functional decline in this cellular pool which influences the regenerative capacity of skeletal muscle. Preclinical evidence have suggested that Nicotinamide Riboside (NR) and Pterostilbene (PT) can improve muscle regeneration e.g. by increasing MuSC function. The objective of the present study was to investigate if NRPT supplementation promotes skeletal muscle regeneration after muscle injury in elderly humans by improved recruitment of MuSCs. Methods In a randomized, double-blinded, placebo-controlled trial, 32 elderly men and women (55-80 yr) received daily supplementation with either NRPT (1000 mg NR + 200 mg PT) or matched placebo. Two weeks after initiation of supplementation, a skeletal muscle injury was applied in the vastus lateralis part of the quadriceps femoris muscle by electrically induced eccentric muscle work in a dynamometer. Skeletal muscle biopsies were obtained pre, 2h, 2, 8, and 30 days post injury. The main outcome of the study was change in MuSC content 8 days post injury. Results 31 enrolled subjects completed the entire protocol. The muscle work induced a substantial skeletal muscle injury in the study participants and was associated with release of myoglobin and creatine kinase, muscle soreness, tissue edema, and a decrease in muscle strength. MuSC content increased by 107% 8 days post injury (p= 0.0002) but with no effect of NRPT supplementation (p=0.58 for supplementation effect). MuSC proliferation and cell size revealed a large demand for recruitment post injury but was not affected by NRPT. Furthermore, histological analyses of muscle fiber area, internal nuclei and embryonic Myosin Heavy Chain showed no effect of NRPT supplementation. Conclusion Daily supplementation with 1000 mg NR + 200 mg PT is safe but does not improve recruitment of the MuSC pool or other measures of muscle recovery in response to injury or subsequent regeneration in elderly subjects.


Stem Cells ◽  
2013 ◽  
Vol 31 (2) ◽  
pp. 384-396 ◽  
Author(s):  
Marielle Saclier ◽  
Houda Yacoub-Youssef ◽  
Abigail L. Mackey ◽  
Ludovic Arnold ◽  
Hamida Ardjoune ◽  
...  

2012 ◽  
Vol 7 (1) ◽  
pp. 19-27 ◽  
Author(s):  
Tiziana Pietrangelo ◽  
Rosa Mancinelli ◽  
Christian Doria ◽  
Guglielmo Di Tano ◽  
Bruno Loffredo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document