mirror visual feedback
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 30)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Ferran Cuenca Martínez

La técnica de neuroentrenamiento sensoriomotor llamada Imaginería Motora Graduada fue desarrollada por George Lorimer Moseley y, basándonos en el estudio de revisión de Priganc que integra la información acerca de esta técnica y su adaptación a la práctica, redactamos el siguiente artículo aplicándolo para el síndrome del miembro fantasma con dolor (Priganc & Stralka., 2011). Victoria Priganc es terapeuta ocupacional y de mano siendo profesora en la Universidad Rocky Mountain en Utah (Estados Unidos). Realiza sus estudios con su equipo investigador sobre Neurociencia e Imaginería Motora Graduada. Tras la pérdida de una extremidad, no es insólito experimentar dolor y/o sensaciones extrañas, tales como quemazón o calambres en la zona que ha sido retirada. ¿Cómo es posible que puedan existir percepciones de un miembro que ya no existe? El conjunto de signos y síntomas que cursa con dolor en un miembro que ya no existe se denomina síndrome de dolor del miembro fantasma, y se puede entender de la siguiente manera: El ser humano, tiene en su corteza cerebral una representación de su cuerpo físico, o lo que es lo mismo, tenemos un cuerpo virtual en nuestro cerebro. Cuando una persona pierde un miembro, este aún sigue estando representada en el cerebro, en nuestro cuerpo virtual, pero sin embargo, ya no se encuentra de manera real en nuestro cuerpo físico. “La incongruencia entre cuerpo físico y el cuerpo virtual podría tener una implicación en el dolor del paciente” Esta incongruencia, entre la extremidad que la corteza tiene representada pero que realmente ya no existe podría ser un posible mecanismo implicado en el dolor del paciente (MacIver et al., 2008). El cerebro no es una estructura estática, sino que se encuentra en continuo cambio. Tiene esa capacidad, y a este concepto, es lo que se le denomina, neuroplasticidad, es un proceso de reorganización constante. En el síndrome de dolor del miembro fantasma, esta incoherencia de la que hablábamos anteriormente, es la causante de provocar un proceso de neuroplasticidad o cambio negativo en la representación de nuestro cuerpo virtual, provocando dolor de forma mantenida. Es, por tanto, que esta reestructuración de nuestro cuerpo virtual en nuestro cerebro es la causante de que personas con miembros amputados experimenten dolor en dicho miembro, donde además se ha demostrado que, a mayor grado de dimensión en la reorganización cortical, el sujeto experimenta mayor intensidad de dolor, así como una mayor alteración de su percepción del cuerpo (Lotze et al., 2001). La Imaginería Motora Graduada, como técnica de neuroentrenamiento, permite resetear este error de congruencia entre los dos cuerpos. Es un tratamiento del cerebro y no del tejido corporal. Estos cambios neuroplásticos adaptativos o beneficiosos que se consigue con la Imaginería Motora Graduada permiten corregir las alteraciones de la percepción corporal, dando como resultado una disminución de la sintomatología del paciente. “Mediante la imaginación de movimientos indoloros y el uso de ilusiones ópticas de la extremidad perdida se podría conseguir una reestructuración a nivel cerebral, disminuyendo el dolor” El tratamiento mediante imaginería motora graduada se compone de tres etapas. En primer lugar, se encuentra la restauración de la lateralidad, que para llevarla a cabo se utilizan técnicas de visualización de imágenes que cursan con un estímulo visual. La justificación de esta primera fase, es que, estos pacientes, cursan con una pérdida de la capacidad de imaginar y reconocer si un miembro pertenece al hemisferio izquierdo o por el contrario al derecho debido al error en la reorganización subyacente al proceso del síndrome de dolor del miembro fantasma, o lo que es lo mismo, estos pacientes, si observan una mano, no pueden diferenciar si es una mano izquierda o una derecha. En segundo lugar, se encuentra la Imaginería Motora. Cuando el paciente ya es capaz de discernir entre si una mano es izquierda o por el contrario es derecha, comienza a ser capaz de imaginar acciones motoras del miembro afecto aumentando ese proceso de reorganización adaptativa y por tanto la integración de ambos hemicuerpos (lados del cuerpo). Y finalmente, se encuentra el Mirror Visual Feedback o Terapia Espejo, el cual es el último escalón en la rehabilitación, donde el paciente observa, en tiempo real, su propio miembro moviéndose gracias a un espejo donde se refleja su extremidad sana. De esta forma, engañamos al cerebro creando una ilusión óptica que provoca una mayor congruencia entre la información que el cerebro recibe del sistema visual del cuerpo real con el que tiene representado de manera virtual, disminuyendo el dolor. En conclusión, la Imaginería Motora Graduada es una técnica de neuroentrenamiento sensoriomotor utilizada en el tratamiento del síndrome de dolor del miembro fantasma, el cual cursa con un proceso de neuroplasticidad negativa que afecta a la representación del cuerpo virtual del paciente donde, mediante la imaginación de movimientos indoloros y el uso de ilusiones ópticas de la extremidad perdida, se consigue un reajuste de la incongruencia entre el cuerpo virtual y el cuerpo físico, disminuyendo el dolor.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1290
Author(s):  
Ziyi Yang ◽  
Shuxiang Guo ◽  
Hideyuki Hirata ◽  
Masahiko Kawanishi

In this paper, a novel mirror visual feedback-based (MVF) bilateral neurorehabilitation system with surface electromyography (sEMG)-based patient active force assessment was proposed for upper limb motor recovery and improvement of limb inter-coordination. A mirror visual feedback-based human–robot interface was designed to facilitate the bilateral isometric force output training task. To achieve patient active participant assessment, an sEMG signals-based elbow joint isometric force estimation method was implemented into the proposed system for real-time affected side force assessment and participation evaluation. To assist the affected side limb efficiently and precisely, a mirror bilateral control framework was presented for bilateral limb coordination. Preliminary experiments were conducted to evaluate the estimation accuracy of force estimation method and force tracking accuracy of system performance. The experimental results show the proposed force estimation method can efficiently calculate the elbow joint force in real-time, and the affected side limb of patients can be assisted to track output force of the non-paretic side limb for better limb coordination by the proposed bilateral rehabilitation system.


2021 ◽  
Vol 11 (10) ◽  
pp. 1284
Author(s):  
Ruei-Yi Tai ◽  
Jun-Ding Zhu ◽  
Chih-Chi Chen ◽  
Yu-Wei Hsieh ◽  
Chia-Hsiung Cheng

Background. Several brain regions are activated in response to mirror visual feedback (MVF). However, less is known about how these brain areas and their connectivity are modulated in stroke patients. This study aimed to explore the effects of MVF on brain functional connectivity in stroke patients. Materials and Methods. We enrolled 15 stroke patients who executed Bilateral-No mirror, Bilateral-Mirror, and Unilateral-Mirror conditions. The coherence values among five brain regions of interest in four different frequency bands were calculated from magnetoencephalographic signals. We examined the differences in functional connectivity of each two brain areas between the Bilateral-No mirror and Bilateral-Mirror conditions and between the Bilateral-Mirror and Unilateral-Mirror conditions. Results. The functional connectivity analyses revealed significantly stronger connectivity between the posterior cingulate cortex and primary motor cortex in the beta band (adjusted p = 0.04) and possibly stronger connectivity between the precuneus and primary visual cortex in the theta band (adjusted p = 0.08) in the Bilateral-Mirror condition than those in the Bilateral-No mirror condition. However, the comparisons between the Bilateral-Mirror and Unilateral-Mirror conditions revealed no significant differences in cortical coherence in all frequency bands. Conclusions. Providing MVF to stroke patients may modulate the lesioned primary motor cortex through visuospatial and attentional cortical networks.


2021 ◽  
Vol 11 (8) ◽  
pp. 1092
Author(s):  
Szu-Hung Lin ◽  
Chia-Hsiung Cheng ◽  
Ching-Yi Wu ◽  
Chien-Ting Liu ◽  
Chia-Ling Chen ◽  
...  

Mirror visual feedback (MVF) has been shown to increase the excitability of the primary motor cortex (M1) during asynchronous bimanual movement. However, the functional networks underlying this process remain unclear. We recruited 16 healthy volunteers to perform asynchronous bimanual movement, that is, their left hand performed partial range of movement while their right hand performed normal full range of movement. Their ongoing brain activities were recorded by whole-head magnetoencephalography during the movement. Participants were required to keep both hands stationary in the control condition. In the other two conditions, participants were required to perform asynchronous bimanual movement with MVF (Asy_M) and without MVF (Asy_w/oM). Greater M1 excitability was found under Asy_M than under Asy_w/oM. More importantly, when receiving MVF, the visual cortex reduced its functional connection to brain regions associated with perceptuo-motor-attentional process (i.e., M1, superior temporal gyrus, and dorsolateral prefrontal cortex). This is the first study to demonstrate a global functional network of MVF during asynchronous bimanual movement, providing a foundation for future research to examine the neural mechanisms of mirror illusion in motor control.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jifeng Rong ◽  
Li Ding ◽  
Li Xiong ◽  
Wen Zhang ◽  
Weining Wang ◽  
...  

Purpose: Robot-assisted training has been widely used in neurorehabilitation, but its effect on facilitating recovery after stroke remains controversial. One possible reason might be lacking consideration of the role of embodiment in robotic systems. Mirror visual feedback is an ideal method to approach embodiment. Thus, we hypothesized that mirror visual feedback priming with subsequent robot-assisted training might provide additional treatment benefits in rehabilitation.Method: This is a prospective, assessor-blinded, randomized, controlled study. Forty subacute stroke patients were randomly assigned into an experimental group (N = 20) or a control group (N = 20). They received either mirror visual feedback or sham-mirror visual feedback prior to robot-assisted training for 1.5 h/day, 5 days/week for 4 weeks. Before and after intervention, the Fugl-Meyer Assessment Upper Limb subscale, the Functional Independence Measure, the modified Barthel Index, and grip strength were measured. Scores of four specified games were recorded pre and post one-time mirror visual feedback priming before intervention in the experimental group.Results: All measurements improved significantly in both groups following interventions. Moreover, the Fugl-Meyer Assessment Upper Limb subscale, self-care subscale of the Functional Independence Measure, and the grip strength were improved significantly in the experimental group after a 4-week intervention, compared with the control group. Significantly higher scores of two games were revealed after one-time priming.Conclusions: Mirror visual feedback prior to robot-assisted training could prompt motor recovery, increase ability of self-care, and potentially enhance grip strength in stroke patients, compared to control treatment. Moreover, mirror visual feedback priming might have the capability to improve the patient's performance and engagement during robot-assisted training, which could prompt the design and development of robotic systems.Clinical Trial Registration:www.ClinicalTrials.gov, identifier: ChiCTR1900023356.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gangadhar Garipelli ◽  
Tamara Rossy ◽  
Daniel Perez-Marcos ◽  
Jane Jöhr ◽  
Karin Diserens

Background: Mirror therapy is thought to drive interhemispheric communication, resulting in a balanced activation. We hypothesized that embodied virtual mirror visual feedback (VR-MVF) presented on a computer screen may produce a similar activation. In this proof-of-concept study, we investigated differences in movement-related cortical potentials (MRCPs) in the electroencephalogram (EEG) from different visual feedback of user movements in 1 stroke patient and 13 age-matched adults.Methods: A 60-year-old right-handed (Edinburgh score >95) male ischemic stroke [left paramedian pontine, National Institutes of Health Stroke Scale (NIHSS) = 6] patient and 13 age-matched right-handed (Edinburgh score >80) healthy adults (58 ± 9 years; six female) participated in the study. We recorded 16-electrode electroencephalogram (EEG), while participants performed planar center-out movements in two embodied visual feedback conditions: (i) direct (movements translated to the avatar's ipsilateral side) and (ii) mirror (movements translated to the avatar's contralateral side) with left (direct left/mirror left) or right (direct right/mirror right) arms.Results: As hypothesized, we observed more balanced MRCP hemispheric negativity in the mirror right compared to the direct right condition [statistically significant at the FC4 electrode; 99.9% CI, (0.81, 13)]. MRCPs in the stroke participant showed reduced lateralized negativity in the direct left (non-paretic) situation compared to healthy participants. Interestingly, the potentials were stronger in the mirror left (non-paretic) compared to direct left case, with significantly more bilateral negativity at FC3 [95% CI (0.758 13.2)] and C2 [95% CI (0.04 9.52)].Conclusions: Embodied mirror visual feedback is likely to influence bilateral sensorimotor cortical subthreshold activity during movement preparation and execution observed in MRCPs in both healthy participants and a stroke patient.


2021 ◽  
Vol 15 ◽  
Author(s):  
Kenneth N. K. Fong ◽  
K. H. Ting ◽  
Jack J. Q. Zhang ◽  
Christina S. F. Yau ◽  
Leonard S. W. Li

Event-related desynchronization (ERD), as a proxy for mirror neuron activity, has been used as a neurophysiological marker for motor execution after mirror visual feedback (MVF). Using EEG, this study investigated ERD upon the immediate effects of single-session MVF in unimanual arm movements compared with the ERD effects occurring without a mirror, in two groups: stroke patients with left hemiplegia and their healthy counterparts. During EEG recordings, each group performed one session of mirror therapy training in three task conditions: with a mirror, with no mirror, and with a covered mirror. An asymmetry index was calculated from the subtraction of the event-related spectrum perturbations between the C3 and C4 electrodes located over the sensorimotor cortices contralateral and ipsilateral to the moved arm. Results of the effect of task versus group in contralateral and ipsilateral motor areas showed that there was a significant effect of task condition at the contralateral motor area in the high beta band (17–35 Hz) at C3. High beta ERD showed that the suppression was greater over the contralateral hemisphere than it was over the ipsilateral hemisphere in both study groups. The magnitude of low beta (12–16 Hz) ERD in patients with stroke was more suppressed in contralesional C3 under the no mirror compared to that of the covered mirror and similarly more suppressed in ipsilesional C4 ERD under the no mirror compared to that of the mirror condition. The correlation analysis revealed that the magnitude of ERSP power correlated significantly with arm severity in the low and high beta bands in patients with stroke, and a higher asymmetry index in the low beta band was associated with higher arm functioning under the no-mirror condition. There was a shift in sensorimotor ERD toward the contralateral hemisphere as induced by MVF accompanying unimanual movement in both stroke patients and healthy controls. The use of ERD in the low beta band as a neurophysiological marker to indicate the relationships between the amount of MVF-induced ERD attenuation and motor severity, and the outcome indicator for improving stroke patients’ neuroplasticity in clinical trials using MVF are warranted to be explored in the future.


Author(s):  
Joshua Corbin Carr ◽  
Michael Bemben ◽  
Matt S. Stock ◽  
Jason M DeFreitas

Illusionary mirror visual feedback alters interhemispheric communication and influences cross-limb interactions. Combining forceful unimanual contractions with the mirror illusion is a convenient way to provoke robust alterations within ipsilateral motor networks. It is unknown, however, if the mirror illusion affects cross-limb fatigability. We examine this concept by comparing the ipsilateral and contralateral handgrip force and electromyographic (EMG) responses following unimanual fatigue with and without illusionary mirror visual feedback. Participants underwent three experimental sessions (Mirror, No-mirror, and Control), performing a unimanual fatigue protocol with and without illusionary mirror visual feedback. Maximal handgrip force and EMG activity were measured before and after each session for both hands during maximal unimanual and bimanual contractions. The associated EMG activity from the inactive forearm during unimanual contraction was also examined. The novel findings demonstrate greater relative fatigability during bimanual versus unimanual contraction following unimanual fatigue (-31.8% versus -23.4%, p < 0.01), and the mirror illusion attenuates this difference (-30.3% versus -26.3%, p = 0.169). The results show no evidence for a cross-over effect of fatigue with (+0.62%, -2.72%) or without (+0.26%, -2.49%) the mirror illusion during unimanual or bimanual contraction. The mirror illusion resulted in significantly lower levels of associated EMG activity in the contralateral forearm. There were no sex differences for any of the measures of fatigability. These results demonstrate the mirror illusion influences contraction-dependent fatigue during maximal handgrip contractions. Alterations in facilitatory and inhibitory transcallosal drive likely explain these findings.


Author(s):  
A. Treshi-Marie Perera ◽  
Jiun Ting Tan ◽  
Poo Shin Mu ◽  
Roger Newport

AbstractPerception of the size of body parts, for instance the hand, has been shown to be distorted in healthy participants, with over- and underestimations of width and length, respectively. Illusory manipulations of body shape and size have highlighted the flexibility of the body representation and have also been found to update immediate perceptions of body size and surrounding objects. Here, we examined whether underlying misperceptions of hand width and length can be modified through exposure to illusory changes in hand size using a mirror visual feedback (MVF) paradigm. While questionnaire responses indicated subjective susceptibility to both magnified and minified manipulations, objective hand size estimates only showed significant differences following exposure to minifying mirrors. These variations might reflect differences in the way that stored representations are accessed or updated in response to size manipulations. Secondly, the findings further reinforce differences between subjective and objective outcomes of illusions on subsequent body perception.


Sign in / Sign up

Export Citation Format

Share Document