scholarly journals Significant blood resistance to nitric oxide transfer in the lung

2010 ◽  
Vol 108 (5) ◽  
pp. 1052-1060 ◽  
Author(s):  
Colin D. R. Borland ◽  
Helen Dunningham ◽  
Fiona Bottrill ◽  
Alain Vuylsteke ◽  
Cuneyt Yilmaz ◽  
...  

Lung diffusing capacity for nitric oxide (DlNO) is used to measure alveolar membrane conductance (DmNO), but disagreement remains as to whether DmNO = DlNO, and whether blood conductance (θNO) = ∞. Our previous in vitro and in vivo studies suggested that θNO < ∞. We now show in a membrane oxygenator model perfused with whole blood that addition of a cell-free bovine hemoglobin (Hb) glutamer-200 solution increased diffusing capacity of the circuit (D) for NO (Dno) by 39%, D for carbon monoxide (Dco) by 24%, and the ratio of Dno to Dco by 12% (all P < 0.001). In three anesthetized dogs, DlNO and DlCO were measured by a rebreathing technique before and after three successive equal volume-exchange transfusions with bovine Hb glutamer-200 (10 ml/kg each, total exchange 30 ml/kg). At baseline, DlNO/DlCO = 4.5. After exchange transfusion, DlNO rose 57 ± 16% (mean ± SD, P = 0.02) and DlNO/DlCO = 7.1, whereas DlCO remained unchanged. Thus, in vitro and in vivo data directly demonstrate a finite θNO. We conclude that the erythrocyte and/or its immediate environment imposes considerable resistance to alveolar-capillary NO uptake. DlNO is sensitive to dynamic hematological factors and is not a pure index of conductance of the alveolar tissue membrane. With successive exchange transfusion, the estimated in vivo θNO [5.1 ml NO·(ml blood·min·Torr)−1] approached 4.5 ml NO·(ml blood·min·Torr)−1, which was derived from in vitro measurements by Carlsen and Comroe ( J Gen Physiol 42: 83–107, 1958). Therefore, we suggest use of θNO = 4.5 ml NO·(min·Torr·ml blood)−1 for calculation of DmNO and pulmonary capillary blood volume from DlNO and DlCO.

2014 ◽  
Vol 116 (1) ◽  
pp. 32-41 ◽  
Author(s):  
Colin Borland ◽  
Fiona Bottrill ◽  
Aled Jones ◽  
Chris Sparkes ◽  
Alain Vuylsteke

The lung nitric oxide (NO) diffusing capacity (DlNO) mainly reflects alveolar-capillary membrane conductance (Dm). However, blood resistance has been shown in vitro and in vivo. To explore whether this resistance lies in the plasma, the red blood cell (RBC) membrane, or in the RBC interior, we measured the NO diffusing capacity (Dno) in a membrane oxygenator circuit containing ∼1 liter of horse or human blood exposed to 14 parts per million NO under physiological conditions on 7 separate days. We compared results across a 1,000-fold change in extracellular diffusivity using dextrans, plasma, and physiological salt solution. We halved RBC surface area by comparing horse and human RBCs. We altered the diffusive resistance of the RBC interior by adding sodium nitrite converting oxyhemoglobin to methemoglobin. Neither increased viscosity nor reduced RBC size reduced Dno. Adding sodium nitrite increased methemoglobin and was associated with a steady fall in Dno ( P < 0.001). Similar results were obtained at NO concentrations found in vivo. The RBC interior appears to be the site of the blood resistance.


Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1234-1234 ◽  
Author(s):  
Laura M. De Castro ◽  
Jude C. Jonassaint ◽  
Jennifer G. Johnson ◽  
Milena Batchvarova ◽  
Marilyn J. Telen

Abstract Sickle red blood cells (SS RBC) are abnormally adhesive to both endothelial cells (ECs) and components of the extracellular matrix (ECM). Epinephrine (epi) has been shown to elevate cAMP in SS RBC and increase adhesion of SS RBC to ECs in a protein kinase A-dependent manner. In vitro and in vivo studies performed in our lab have led to the hypothesis that adrenergic stimuli such as epi may initiate or exacerbate vaso-occlusion and thus contribute to the association of vaso-occlusive events with physiologic stress. We are conducting a prospective, dose-escalation pilot clinical study to investigate whether in vivo administration of one dose of propranolol either down-regulates baseline SS RBC adhesion in vitro or prevents its upregulation by epi. In addition, this study will provide additional safety data regarding the use of propranolol in normotensive patients with sickle cell disease (SCD). Figure Figure To date, we have completed the first two dose cohorts. 11 subjects (9 SS and 1 Sβ° thalassemia; 7 females, 3 males) have participated. No severe adverse events were noted. Cohorts 1 and 2 had mean pre-propranolol blood pressure (BP) of 116 (5.9 SD)/ 60.4 (3.98 SD) and 106.8 (4.68 SD)/ 58 (3.9 SD), respectively; this difference was not statistically significant. Minimal and asymptomatic changes in BP were noted in both cohorts after drug administration, with biphasic systolic and diastolic BP nadirs at 45 and 240 minutes. No clinically significant changes in heart rate were observed. Adhesion studies were performed using a graduated height flow chamber on the day of RBC collection. RBC adhesion to ECs was studied before and after epi stimulation and was measured at sheer stresses ranging from 1 to 3 dyne/cm2. Baseline adhesion measurements were validated by comparing percent (%) adhesion assayed at 2 different times within 7 days—at screening and before propranolol dose on the study drug day. We observed no significant difference in adhesion at the 2 different time points without propranolol. Comparison of % adhesion of epi-stimulated RBC to ECs before and 1 hour after propranolol showed that propranolol given in vivo significantly inhibited both non-stimulated and epi-stimulated SS RBC adhesion (p=0.04 and p=0.001, respectively). Lastly, comparison of SS RBC adhesion at both drug doses confirmed the drug-related inhibition of adhesion (p&lt;0.004). We conclude that propranolol administered in vivo decreases SS RBC baseline adhesion to ECs and substantially abrogates epi-stimulated adhesion to ECs, as measured in vitro. Although we have thus far studied only a small number of patients and low propranolol doses, we expect to confirm these results with the 3rd cohort, in which a higher dose of propranolol will be used. If our findings continue to show that propranolol can decrease both SS RBC baseline and epi-stimulated adhesion to ECs, study of propranolol on a larger scale would be warranted in order to ascertain its safety and efficacy as an anti-adhesive therapy in SCD.


2013 ◽  
Vol 304 (7) ◽  
pp. R473-R487 ◽  
Author(s):  
Daniela Salvemini ◽  
Sangwon F. Kim ◽  
Vincenzo Mollace

The nitric oxide (NO) and cyclooxygenase (COX) pathways share a number of similarities. Nitric oxide is the mediator generated from the NO synthase (NOS) pathway, and COX converts arachidonic acid to prostaglandins, prostacyclin, and thromboxane A2. Two major forms of NOS and COX have been identified to date. The constitutive isoforms critically regulate several physiological states. The inducible isoforms are overexpressed during inflammation in a variety of cells, producing large amounts of NO and prostaglandins, which may underlie pathological processes. The cross-talk between the COX and NOS pathways was initially reported by Salvemini and colleagues in 1993, when they demonstrated in a series of in vitro and in vivo studies that NO activates the COX enzymes to produce increased amounts of prostaglandins. Those studies led to the concept that COX enzymes represent important endogenous “receptor” targets for amplifying or modulating the multifaceted roles of NO in physiology and pathology. Since then, numerous studies have furthered our mechanistic understanding of these interactions in pathophysiological settings and delineated potential clinical outcomes. In addition, emerging evidence suggests that the canonical nitroxidative species (NO, superoxide, and/or peroxynitrite) modulate biosynthesis of prostaglandins through non-COX-related pathways. This article provides a comprehensive state-of-the art overview in this area.


1996 ◽  
Vol 271 (6) ◽  
pp. H2646-H2652 ◽  
Author(s):  
J. F. Keaney ◽  
J. M. Hare ◽  
J. L. Balligand ◽  
J. Loscalzo ◽  
T. W. Smith ◽  
...  

Recent in vitro evidence suggests a role for nitric oxide (NO) in the modulation of myocardial contractility. The specific role of NO in the control of cardiac function in vivo, however, remains unclear. We investigated the effect of NO synthase (NOS) inhibition on myocardial contractility in response to beta-adrenergic stimulation in autonomically blocked dogs. Intracoronary infusions of dobutamine (1-50 micrograms/min) and isoproterenol (0.1 and 0.5 microgram/min) were performed before and after the intracoronary administration of the specific NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME). Intracoronary dobutamine resulted in a dose-dependent increase in peak first derivative of pressure (dP/dtmax) to a maximum of 195 +/- 10% (P < 0.001). After inhibition of NOS with intracoronary L-NAME at rates of 0.1 and 1 mg/min, the response to dobutamine was significantly enhanced with dP/dtmax, increasing 276 +/- 17 and 317 +/- 26%, respectively (P < 0.001). Intracoronary isoproterenol resulted in a maximum increase in dP/dtmax of 116 +/- 15% (P < 0.001) that further increased to 154 +/- 17 and 157 +/- 18% after NOS inhibition with 0.1 and 1 mg/min L-NAME, respectively (both P < 0.002). L-NAME had no effect on baseline dP/dtmax but did produce a reduction in myocardial guanosine 3',5'-cyclic monophosphate content. These results suggest a role for NO in the control of myocardial contractility in response to beta-adrenergic stimulation in vivo.


2000 ◽  
Vol 278 (5) ◽  
pp. R1117-R1124 ◽  
Author(s):  
Mingyu Liang ◽  
Franklyn G. Knox

A significant role for nitric oxide (NO) in proximal tubule physiology and pathophysiology has been revealed by a series of in vivo and in vitro studies. Whether the proximal tubule produces NO under basal conditions is still controversial; however, evidence suggests that the proximal tubule is constantly exposed to NO that might include NO from nonproximal tubule sources. When challenged with a variety of stimuli, including hypoxia, the proximal tubule is able to produce large quantities of NO. In vivo studies generally indicate that NO inhibits fluid and sodium reabsorption by the proximal tubule. However, the final effect of NO on proximal tubular reabsorption appears to depend on the concentration of NO and involve interaction with other regulatory mechanisms. NO regulates Na+-K+-ATPase, Na+/H+ exchangers, and paracellular permeability of proximal tubular cells, which may contribute to its effect on proximal tubular transport. Enhanced production of NO, perhaps depending on macrophage type inducible NO synthase, participates in hypoxic/ischemic proximal tubular injury. In conclusion, NO plays a fundamental role in both physiology and pathophysiology of the proximal tubule.


Sign in / Sign up

Export Citation Format

Share Document