scholarly journals NITRIC OXIDE (NO)-CHEMOTHERAPY OF GLIOMAS: EXPERIMENTAL IN VITRO AND IN VIVO STUDIES OF MECHANISMS OF ANTITUMOR ACTIVITY OF LOWMOLECULAR-WEIGHT DINITROSYL IRON COMPLEXES

Author(s):  
N.A. Sanina ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 1142-1153
Author(s):  
В.Д. Микоян ◽  
◽  
Е.Н. Бургова ◽  
Р.Р. Бородулин ◽  
А.Ф. Ванин ◽  
...  

The number of mononitrosyl iron complexes with diethyldithiocarbamate, formed in the liver of mice in vivo and in vitro after intraperitoneal injection of binuclear dinitrosyl iron complexes with N-acetyl-L-cysteine or glutathione, S-nitrosoglutathione, sodium nitrite or the vasodilating drug Isoket® was assessed by electron paramagnetic resonance (EPR). The number of the said complexes, in contrast to the complexes, formed after nitrite or Isoket administration, the level of which sharply increased after treatment of liver preparations with a strong reducing agent - dithionite, did not change in the presence of dithionite. It was concluded that, in the first case, EPR-detectable mononitrosyl iron complexes with diethyldithiocarbamate in the absence and presence of dithionite appeared as a result of the reaction of NO formed from nitrite with Fe2+-dieth- yldithiocarbamate and Fe3+-diethyldithiocarbamate complexes, respectively. In the second case, mononitrosyl iron complexes with diethyldithiocarbamate appeared as a result of the transition of iron-mononitosyl fragments from ready-made iron-dinitrosyl groups of binuclear dinitrosyl complexes, which is three to four times higher than the content of the mononuclear form of these complexes in the tissue...


2019 ◽  
Vol 65 (5) ◽  
pp. 760-765
Author(s):  
Margarita Tyndyk ◽  
Irina Popovich ◽  
A. Malek ◽  
R. Samsonov ◽  
N. Germanov ◽  
...  

The paper presents the results of the research on the antitumor activity of a new drug - atomic clusters of silver (ACS), the colloidal solution of nanostructured silver bisilicate Ag6Si2O7 with particles size of 1-2 nm in deionized water. In vitro studies to evaluate the effect of various ACS concentrations in human tumor cells cultures (breast cancer, colon carcinoma and prostate cancer) were conducted. The highest antitumor activity of ACS was observed in dilutions from 2.7 mg/l to 5.1 mg/l, resulting in the death of tumor cells in all studied cell cultures. In vivo experiments on transplanted Ehrlich carcinoma model in mice consuming 0.75 mg/kg ACS with drinking water revealed significant inhibition of tumor growth since the 14th day of experiment (maximally by 52% on the 28th day, p < 0.05) in comparison with control. Subcutaneous injections of 2.5 mg/kg ACS inhibited Ehrlich's tumor growth on the 7th and 10th days of the experiment (p < 0.05) as compared to control.


BIOPHYSICS ◽  
2020 ◽  
Vol 65 (5) ◽  
pp. 863-868
Author(s):  
A. F. Vanin ◽  
L. A. Ostrovskaya ◽  
D. B. Korman ◽  
E. I. Nekrasova ◽  
O. O. Riabaya ◽  
...  

Author(s):  
Maria Cristina Budani ◽  
Gian Mario Tiboni

Nitric oxide (NO) is formed during the oxidation of L-arginine to L-citrulline by the action of multiple isoenzymes of NO synthase (NOS): neuronal NOS (nNOS), endotelial NOS (eNOS), and inducible NOS (iNOS). NO plays a relevant role in the vascular endothelium, in central and peripheral neurons, and in immunity and inflammatory systems. In addition, several authors showed a consistent contribution of NO to different aspects of the reproductive physiology. The aim of the present review is to analyse the published data on the role of NO within the ovary. It has been demonstrated that the multiple isoenzymes of NOS are expressed and localized in the ovary of different species. More to the point, a consistent role was ascribed to NO in the processes of steroidogenesis, folliculogenesis, and oocyte meiotic maturation in in vitro and in vivo studies using animal models. Unfortunately, there are few nitric oxide data for humans; there are preliminary data on the implication of nitric oxide for oocyte/embryo quality and in-vitro fertilization/embryo transfer (IVF/ET) parameters. NO plays a remarkable role in the ovary, but more investigation is needed, in particular in the context of human ovarian physiology.


2006 ◽  
Vol 12 (3) ◽  
pp. 345-352 ◽  
Author(s):  
Hanna Lewandowska ◽  
Sylwia Męczyńska ◽  
Barbara Sochanowicz ◽  
Jarosław Sadło ◽  
Marcin Kruszewski

1984 ◽  
Vol 2 (4) ◽  
pp. 282-286 ◽  
Author(s):  
S E Salmon ◽  
L Young ◽  
B Soehnlen ◽  
R Liu

The new anthracycline analog, esorubicin (4'deoxy-doxorubicin, ESO), was tested against fresh biopsies of human solid tumors in vitro in clonogenic assay and the results were contrasted to those obtained with doxorubicin (DOX). ESO appeared to be significantly more potent on a weight basis than DOX in these studies, and exhibited a spectrum of antitumor activity in vitro that was in general qualitatively similar to that observed with DOX. In vitro antitumor activity was observed in a wide variety of human cancers including anthracycline-sensitive tumor types. ESO has previously been reported to have decreased cardiac toxicity in preclinical models as compared to DOX. Comparative testing of these anthracyclines on granulocyte-macrophage colony-forming units (GM-CFUs) and tumor colony forming units (TCFUs) indicated that the in vitro GM-CFU assay is more sensitive to these myelosuppressive drugs than are TCFUs, and underscores the need for in vivo studies to determine normal tissue toxicity and the therapeutic index of a drug. Early results of phase I studies suggest that with respect to myelosuppression, the maximally tolerated dose of ESO will be about half that of DOX. The increased in vitro antitumor potency observed for ESO and a spectrum of activity (even at one half the dose of DOX) supports the broad testing of ESO in the clinic to determine whether it will prove to be a more effective and less toxic anthracycline.


2015 ◽  
Vol 44 (28) ◽  
pp. 12640-12652 ◽  
Author(s):  
Hanna Lewandowska ◽  
Jarosław Sadło ◽  
Sylwia Męczyńska ◽  
Tomasz M. Stępkowski ◽  
Grzegorz Wójciuk ◽  
...  

Formation of glutathionyl nitrosyl complexes abolishes the in vitro genotoxic effect of iron ions alone and iron ions in the presence of a naturally abundant antioxidant, GSH.


Sign in / Sign up

Export Citation Format

Share Document