scholarly journals Fiber type-specific analysis of AMPK isoforms in human skeletal muscle: advancement in methods via capillary nanoimmunoassay

2018 ◽  
Vol 124 (4) ◽  
pp. 840-849 ◽  
Author(s):  
Irene S. Tobias ◽  
Kara K. Lazauskas ◽  
Jose A. Arevalo ◽  
James R. Bagley ◽  
Lee E. Brown ◽  
...  

Human skeletal muscle is a heterogeneous mixture of multiple fiber types (FT). Unfortunately, present methods for FT-specific study are constrained by limits of protein detection in single-fiber samples. These limitations beget compensatory resource-intensive procedures, ultimately dissuading investigators from pursuing FT-specific research. Additionally, previous studies neglected hybrid FT, confining their analyses to only pure FT. Here we present novel methods of protein detection across a wider spectrum of human skeletal muscle FT using fully automated capillary nanoimmunoassay (CNIA) technology. CNIA allowed a ~20-fold-lower limit of 5′-AMP-activated protein kinase (AMPK) detection compared with Western blotting. We then performed FT-specific assessment of AMPK expression as a proof of concept. Individual human muscle fibers were mechanically isolated, dissolved, and myosin heavy chain (MHC) fiber typed via SDS-PAGE. Single-fiber samples were combined in pairs and grouped into MHC I, MHC I/IIa, MHC IIa, and MHC IIa/IIx for expression analysis of AMPK isoforms α1, α2, β1, β2, γ2, and γ3 with a tubulin loading control. Significant FT-specific differences were found for α2 (1.7-fold higher in MHC IIa and MHC IIa/IIx vs. others), γ2 (2.5-fold higher in MHC IIa vs. others), and γ3 (2-fold higher in MHC IIa and 4-fold higher in MHC IIa/IIx vs. others). Development of a protocol that combines the efficient and sensitive CNIA technology with comprehensive SDS-PAGE fiber typing marks an important advancement in FT-specific research because it allows more precise study of the molecular mechanisms governing metabolism, adaptation, and regulation in human muscle. NEW & NOTEWORTHY We demonstrate the viability of applying capillary nanoimmunoassay technology to the study of fiber type-specific protein analysis in human muscle fibers. This novel technique enables a ~20-fold-lower limit of protein detection compared with traditional Western blotting methods. Combined with SDS-PAGE methods of fiber typing, we apply this technique to compare 5′-AMP-activated protein kinase isoform expression in myosin heavy chain (MHC) I, MHC I/IIa, MHC IIa, and MHC IIa/IIx fiber types.

2020 ◽  
Author(s):  
Lien A. Phung ◽  
Aurora D. Foster ◽  
Mark S. Miller ◽  
Dawn A. Lowe ◽  
David D. Thomas

AbstractThe myosin super-relaxed state (SRX) in skeletal muscle is hypothesized to play an important role in regulating muscle contractility and thermogenesis in humans, but has only been examined in model organisms. Here we report the first human skeletal muscle SRX measurements, using quantitative epifluorescence microscopy of fluorescent 2’/3’-O-(N-methylanthraniloyl) ATP (mantATP) single-nucleotide turnover. Myosin heavy chain (MHC) isoform expression was determined using gel electrophoresis for each permeabilized vastus lateralis fiber, to allow for novel comparisons of SRX between fiber-types. We find that the fraction of myosin in SRX is less in MHC IIA fibers than in MHC I and IIAX fibers (p = 0.008). ATP turnover of SRX is faster in MHC IIAX fibers compared to MHC I and IIA fibers (p = 0.001). We conclude that SRX biochemistry is measurable in human skeletal muscle, and our data indicate that SRX depends on fiber type as classified by MHC isoform. Extension from this preliminary work would provide further understanding regarding the role of SRX in human muscle physiology.


2020 ◽  
Vol 319 (6) ◽  
pp. C1158-C1162 ◽  
Author(s):  
Lien A. Phung ◽  
Aurora D. Foster ◽  
Mark S. Miller ◽  
Dawn A. Lowe ◽  
David D. Thomas

The myosin super-relaxed state (SRX) in skeletal muscle is hypothesized to play an important role in regulating muscle contractility and thermogenesis in humans but has only been examined in model organisms. Here we report the first human skeletal muscle SRX measurements, using quantitative epifluorescence microscopy of fluorescent 2′/3′- O-( N-methylanthraniloyl) ATP (mantATP) single-nucleotide turnover. Myosin heavy chain (MHC) isoform expression was determined using gel electrophoresis for each permeabilized vastus lateralis fiber, to allow for novel comparisons of SRX between fiber types. We find that the fraction of myosin in SRX is less in MHC IIA fibers than in MHC I and IIAX fibers ( P = 0.008). ATP turnover of SRX is faster in MHC IIAX fibers compared with MHC I and IIA fibers ( P = 0.001). We conclude that SRX biochemistry is measurable in human skeletal muscle, and our data indicate that SRX depends on fiber type as classified by MHC isoform. Extension from this preliminary work would provide further understanding regarding the role of SRX in human muscle physiology.


1997 ◽  
Vol 22 (4) ◽  
pp. 307-327 ◽  
Author(s):  
Robert S. Staron

This brief review attempts to summarize a number of studies on the delineation, development, and distribution of human skeletal muscle fiber types. A total of seven fiber types can be identified in human limb and trunk musculature based on the pH stability/ability of myofibrillar adenosine triphosphatase (mATPase). For most human muscles, mATPase-based fiber types correlate with the myosin heavy chain (MHC) content. Thus, each histochemically identified fiber has a specific MHC profile. Although this categorization is useful, it must be realized that muscle fibers are highly adaptable and that innumerable fiber type transients exist. Also, some muscles contain specific MHC isoforms and/or combinations that do not permit routine mATPase-based fiber typing. Although the major populations of fast and slow are, for the most part, established shortly after birth, subtle alterations take place throughout life. These changes appear to relate to alterations in activity and/or hormonal levels, and perhaps later in life, total fiber number. Because large variations in fiber type distribution can be found within a muscle and between individuals, interpretation of data gathered from human muscle is often difficult. Key words: aging, myosin heavy chains, myogenesis, myofibrillar adenosine triphosphate


2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


2020 ◽  
Vol 75 (12) ◽  
pp. 2333-2341
Author(s):  
Chad R Straight ◽  
Olivia R Ringham ◽  
Jenna M Bartley ◽  
Spencer R Keilich ◽  
George A Kuchel ◽  
...  

Abstract Skeletal muscle myopathies represent a common non-pulmonary manifestation of influenza infection, leading to reduced physical function and hospitalization in older adults. However, underlying mechanisms remain poorly understood. Our study examined the effects of influenza virus A pulmonary infection on contractile function at the cellular (single fiber) and molecular (myosin-actin interactions and myofilament properties) levels in soleus and extensor digitorum longus muscles of aged (20 months) C57BL/6 male mice that were healthy or flu-infected for 7 (7-days post-infection; 7-DPI) or 12 days (12-DPI). Cross-sectional area (CSA) of myosin heavy chain (MHC) IIA and IIB fibers was reduced at 12-DPI relative to 7-DPI and healthy. Maximal isometric force in MHC IIA fibers was also reduced at 12-DPI relative to 7-DPI and healthy, resulting in no change in specific force (maximal isometric force divided by CSA). In contrast, MHC IIB fibers produced greater isometric force and specific force at 7-DPI compared to 12-DPI or healthy. The increased specific force in MHC IIB fibers was likely due to greater myofilament lattice stiffness and/or an increased number or stiffness of strongly bound myosin-actin cross-bridges. At the molecular level, cross-bridge kinetics were slower in MHC IIA fibers with infection, while changes in MHC IIB fibers were largely absent. In both fiber types, greater myofilament lattice stiffness was positively related to specific force. This study provides novel evidence that cellular and molecular contractile function is impacted by influenza infection in a fiber type-specific manner, suggesting potential molecular mechanisms to help explain the impact of flu-induced myopathies.


2018 ◽  
Vol 125 (2) ◽  
pp. 470-478 ◽  
Author(s):  
Martin Thomassen ◽  
Morten Hostrup ◽  
Robyn M. Murphy ◽  
Brett A. Cromer ◽  
Casper Skovgaard ◽  
...  

Cl− channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa. Abundance of ClC-1 was 38% higher ( P < 0.01) in fast twitch Type IIa muscle fibers than in slow twitch Type I. Muscle ClC-1 abundance did not change with 4 wk of training consisting of 30 min cycling at 85% of maximal heart rate (HRmax) and 3 × 30-s all out sprints or during a 7-wk training period with 10–12 × 30 s uphill cycling and 4–5 × ~4 min cycling at 90%–95% of HRmax. ClC-1 abundance correlated negatively ( P < 0.01) with maximal oxygen consumption ( r = –0.552) and incremental exercise performance ( r = –0.546). In addition, trained cyclists had lower ( P < 0.01) ClC-1 abundance than lesser trained individuals. The present observations indicate that a low abundance of muscle ClC-1 may be beneficial for exercise performance, but the role of abundance and regulation of ClC-1 in skeletal muscle of humans with respect to exercise performance and trainability need to be elucidated. NEW & NOTEWORTHY Abundance of the Cl− channel protein 1 (ClC-1) chloride channel may be important for excitability and contractility in human skeletal muscle and may therefore have implications for fatigue development. In this study, we confirmed ClC-1 specificity for a commercially available antibody, and this study is first to our knowledge to determine ClC-1 protein abundance in human muscle by Western blotting. We observed that abundance of ClC-1 was higher in fast compared with slow twitch fibers and lower in trained individuals than in recreationally active.


2010 ◽  
Vol 108 (5) ◽  
pp. 1410-1416 ◽  
Author(s):  
J. M. Dickinson ◽  
J. D. Lee ◽  
B. E. Sullivan ◽  
M. P. Harber ◽  
S. W. Trappe ◽  
...  

The aim of this study was to develop an approach to directly assess protein fractional synthesis rate (FSR) in isolated human muscle fibers in a fiber type-specific fashion. Individual muscle fibers were isolated from biopsies of the vastus lateralis (VL) and soleus (SOL) obtained from eight young men during a primed, continuous infusion of [5,5,5-2H3]leucine performed under basal conditions. To determine mixed protein FSR, a portion of each fiber was used to identify fiber type, fibers of the same type were pooled, and the [5,5,5-2H3]leucine enrichment was determined via GC-MS. Processing isolated slow-twitch [myosin heavy chain (MHC) I] and fast-twitch (MHC IIa) fibers for mixed protein bound [5,5,5-2H3]leucine enrichment yielded mass ion chromatographic peaks that were similar in shape, abundance, and measurement reliability as tissue homogenates. In the VL, MHC I fibers exhibited a 33% faster ( P < 0.05) mixed protein FSR compared with MHC IIa fibers (0.068 ± 0.006 vs. 0.051 ± 0.003%/h). MHC I fibers from the SOL (0.060 ± 0.005%/h) and MHC I fibers from the VL displayed similar ( P > 0.05) mixed protein FSR. Feasibility of processing isolated human muscle fibers for analysis of myofibrillar protein [5,5,5-2H3]leucine enrichment was also confirmed in non-fiber-typed pooled fibers from the VL. These methods can be applied to the study of fiber type-specific responses in human skeletal muscle. The need for this level of investigation is underscored by the different contributions of each fiber type to whole muscle function and the numerous distinct adaptive functional and metabolic changes in MHC I and MHC II fibers originating from the same muscle.


2007 ◽  
Vol 103 (6) ◽  
pp. 2105-2111 ◽  
Author(s):  
A. R. Tupling ◽  
E. Bombardier ◽  
R. D. Stewart ◽  
C. Vigna ◽  
A. E. Aqui

To investigate the time course of fiber type-specific heat shock protein 70 (Hsp70) expression in human skeletal muscle after acute exercise, 10 untrained male volunteers performed single-legged isometric knee extensor exercise at 60% of their maximal voluntary contraction (MVC) with a 50% duty cycle (5-s contraction and 5-s relaxation) for 30 min. Muscle biopsies were collected from the vastus lateralis before (Pre) exercise in the rested control leg (C) and immediately after exercise (Post) in the exercised leg (E) only and on recovery days 1 (R1), 2 (R2), 3 (R3), and 6 (R6) from both legs. As demonstrated by Western blot analysis, whole muscle Hsp70 content was unchanged ( P > 0.05) immediately after exercise (Pre vs. Post), was increased ( P < 0.05) by ∼43% at R1, and remained elevated throughout the entire recovery period in E only. Hsp70 expression was also assessed in individual muscle fiber types I, IIA, and IIAX/IIX by immunohistochemistry. There were no fiber type differences ( P > 0.05) in basal Hsp70 expression. Immediately after exercise, Hsp70 expression was increased ( P < 0.05) in type I fibers by ∼87% but was unchanged ( P > 0.05) in type II fibers (Pre vs. Post). At R1 and throughout recovery, Hsp70 content in E was increased above basal levels ( P < 0.05) in all fiber types, but Hsp70 expression was always highest ( P < 0.05) in type I fibers. Hsp70 content in C was not different from Pre at any time throughout recovery. Glycogen depletion was observed at Post in all type II, but not type I, fibers, suggesting that the fiber type differences in exercise-induced Hsp70 expression were not related to glycogen availability. These results demonstrate that the time course of exercise-induced Hsp70 expression in human skeletal muscle is fiber type specific.


2011 ◽  
Vol 110 (3) ◽  
pp. 820-825 ◽  
Author(s):  
Robyn M. Murphy

Human physiological studies typically use skeletal muscle biopsies from the heterogeneous vastus lateralis muscle comprised of both fast-twitch and slow-twitch fiber types. It is likely that potential changes of physiological importance are overlooked because fiber-type specific responses may not be apparent in the whole muscle preparation. A technological advance in Western blotting is presented where proteins are analyzed in just one small segment (<2 mm) of individual fibers dissected from freeze-dried muscle samples using standard laboratory equipment. A significant advance is being able to classify every fiber at the level of both contractile (myosin heavy chain and tropomyosin) and sarcoplasmic reticulum [sarco(endo)plasmic reticulum Ca2+-ATPase type 1] properties and then being able to measure specific proteins in the very same segments. This removes the need to fiber type segments before further analyses and, as such, dramatically reduces the time required for sample collection. Compared with slow-twitch fibers, there was less AMP-activated protein kinase (AMPK)-α1 (∼25%) and AMPK-β1 (∼60%) in fast-twitch fibers from human skeletal muscle biopsies.


2015 ◽  
Vol 308 (3) ◽  
pp. E223-E230 ◽  
Author(s):  
Carlos M. Castorena ◽  
Edward B. Arias ◽  
Naveen Sharma ◽  
Jonathan S. Bogan ◽  
Gregory D. Cartee

To fully understand skeletal muscle at the cellular level, it is essential to evaluate single muscle fibers. Accordingly, the major goals of this study were to determine if there are fiber type-related differences in single fibers from rat skeletal muscle for: 1) contraction-stimulated glucose uptake and/or 2) the abundance of GLUT4 and other metabolically relevant proteins. Paired epitrochlearis muscles isolated from Wistar rats were either electrically stimulated to contract (E-Stim) or remained resting (No E-Stim). Single fibers isolated from muscles incubated with 2-deoxy-d-[3H]glucose (2-DG) were used to determine fiber type [myosin heavy chain (MHC) isoform protein expression], 2-DG uptake, and abundance of metabolically relevant proteins, including the GLUT4 glucose transporter. E-Stim, relative to No E-Stim, fibers had greater ( P < 0.05) 2-DG uptake for each of the isolated fiber types (MHC-IIa, MHC-IIax, MHC-IIx, MHC-IIxb, and MHC-IIb). However, 2-DG uptake for E-Stim fibers was not significantly different among these five fiber types. GLUT4, tethering protein containing a UBX domain for GLUT4 (TUG), cytochrome c oxidase IV (COX IV), and filamin C protein levels were significantly greater ( P < 0.05) in MHC-IIa vs. MHC-IIx, MHC-IIxb, or MHC-IIb fibers. TUG and COX IV in either MHC-IIax or MHC-IIx fibers exceeded values for MHC-IIxb or MHC-IIb fibers. GLUT4 levels for MHC-IIax fibers exceeded MHC-IIxb fibers. GLUT4, COX IV, filamin C, and TUG abundance in single fibers was significantly ( P < 0.05) correlated with each other. Differences in GLUT4 abundance among the fiber types were not accompanied by significant differences in contraction-stimulated glucose uptake.


Sign in / Sign up

Export Citation Format

Share Document