Latrunculin B increases force fluctuation-induced relengthening of ACh-contracted, isotonically shortened canine tracheal smooth muscle

2005 ◽  
Vol 98 (2) ◽  
pp. 489-497 ◽  
Author(s):  
M. L. Dowell ◽  
O. J. Lakser ◽  
W. T. Gerthoffer ◽  
J. J. Fredberg ◽  
G. L. Stelmack ◽  
...  

We hypothesized that differences in actin filament length could influence force fluctuation-induced relengthening (FFIR) of contracted airway smooth muscle and tested this hypothesis as follows. One-hundred micromolar ACh-stimulated canine tracheal smooth muscle (TSM) strips set at optimal reference length ( Lref) were allowed to shorten against 32% maximal isometric force (Fmax) steady preload, after which force oscillations of ±16% Fmax were superimposed. Strips relengthened during force oscillations. We measured hysteresivity and calculated FFIR as the difference between muscle length before and after 20-min imposed force oscillations. Strips were relaxed by ACh removal and treated for 1 h with 30 nM latrunculin B (sequesters G-actin and promotes depolymerization) or 500 nM jasplakinolide (stabilizes actin filaments and opposes depolymerization). A second isotonic contraction protocol was then performed; FFIR and hysteresivity were again measured. Latrunculin B increased FFIR by 92.2 ± 27.6% Lref and hysteresivity by 31.8 ± 13.5% vs. pretreatment values. In contrast, jasplakinolide had little influence on relengthening by itself; neither FFIR nor hysteresivity was significantly affected. However, when jasplakinolide-treated tissues were then incubated with latrunculin B in the continued presence of jasplakinolide for 1 more h and a third contraction protocol performed, latrunculin B no longer substantially enhanced TSM relengthening. In TSM treated with latrunculin B + jasplakinolide, FFIR increased by only 3.03 ± 5.2% Lref and hysteresivity by 4.14 ± 4.9% compared with its first (pre-jasplakinolide or latrunculin B) value. These results suggest that actin filament length, in part, determines the relengthening of contracted airway smooth muscle.

2005 ◽  
Vol 83 (10) ◽  
pp. 923-931 ◽  
Author(s):  
Jeffrey J Fredberg ◽  
Paulo S.P Silveira

Length adaptation of the airway smooth muscle cell is attributable to cytoskeletal remodeling. It has been proposed that dysregulated actin filaments may become longer in asthma, and that such elongation would prevent a parallel-to-series transition of contractile units, thus precluding the well-known beneficial effects of deep inspirations and tidal breathing. To test the potential effect that actin filament elongation could have in overall muscle mechanics, we present an extremely simple model. The cytoskeleton is represented as a 2-D network of links (contractile filaments) connecting nodes (adhesion plaques). Such a network evolves in discrete time steps by forming and dissolving links in a stochastic fashion. Links are formed by idealized contractile units whose properties are either those from normal or elongated actin filaments. Oscillations were then imposed on the network to evaluate both the effects of breathing and length adaptation. In response to length oscillation, a network with longer actin filaments showed smaller decreases of force, smaller increases in compliance, and higher shortening velocities. Taken together, these changes correspond to a network that is refractory to the effects of breathing and therefore approximates an asthmatic scenario. Thus, an extremely simple model seems to capture some relatively complex mechanics of airway smooth muscle, supporting the idea that dysregulation of actin filament length may contribute to excessive airway narrowing.Key words: asthma, actin filaments, series-to-parallel transition, mechanics, length adaptation.


1998 ◽  
Vol 275 (6) ◽  
pp. L1026-L1030 ◽  
Author(s):  
Martin Bard ◽  
Sergio Salmeron ◽  
Catherine Coirault ◽  
Francois-Xavier Blanc ◽  
Yves Lecarpentier

In the guinea pig, tracheal smooth muscle (TSM) exhibits intrinsic tone (IT). The active nature of IT suggests that it could be influenced by muscle length and load. In the guinea pig, IT is entirely suppressed by the cyclooxygenase inhibitor indomethacin. IT could be measured as the difference between resting tone before and after indomethacin addition. We examined, in electrically stimulated TSM strips ( n= 9), the influence of initial muscle length ( L i) on IT, the relationship between IT and the maximum extent of relaxation (ΔF1), and the influence of indomethacin on active isometric force. When L i decreased from 100 to 75% of optimal L i, there was a significant decrease in IT (from 12.0 ± 0.2 to 5.3 ± 0.1 mN; P < 0.001). Over the range of L i studied, ΔF1 underestimated the amount of IT, but there was a close linear relationship between ΔF1 and IT ( r = 0.9). Compared with the basal state, indomethacin increased active isometric force (from 9.5 ± 1.0 to 19.7 ± 2.0 mN at optimal L i; P < 0.001) and induced its length dependency. In guinea pig TSM, L i was an important determinant of IT.


1999 ◽  
Vol 276 (1) ◽  
pp. L35-L40 ◽  
Author(s):  
Keith A. Jones ◽  
Gilbert Y. Wong ◽  
Christopher J. Jankowski ◽  
Masaki Akao ◽  
David O. Warner

A β-escin-permeabilized canine tracheal smooth muscle preparation was used to test the hypothesis that cGMP decreases Ca2+ sensitivity in airway smooth muscle primarily by inhibiting the membrane receptor-coupled mechanisms that regulate Ca2+ sensitivity and not by inhibiting Ca2+/calmodulin activation of the contractile proteins. 8-Bromo-cGMP (100 μM) had no effect on the free Ca2+concentration-response curves generated in the absence of muscarinic receptor stimulation. In the presence of 100 μM ACh plus 10 μM GTP, 8-bromo-cGMP (100 μM) caused a rightward shift of the free Ca2+ concentration-response curve, significantly increasing the EC50for free Ca2+ from 0.35 ± 0.03 to 0.75 ± 0.06 μM; this effect of 8-bromo-cGMP was concentration dependent from 1 to 100 μM. 8-Bromo-cGMP (100 μM) decreased the level of regulatory myosin light chain (rMLC) phosphorylation for a given cytosolic Ca2+ concentration but had no effect on the amount of isometric force produced for a given level of rMLC phosphorylation. These findings suggest that cGMP decreases Ca2+ sensitivity in canine tracheal smooth muscle primarily by inhibiting the membrane receptor-coupled mechanisms that modulate the relationship between cytosolic Ca2+ concentration and rMLC phosphorylation.


2011 ◽  
Vol 300 (1) ◽  
pp. L121-L131 ◽  
Author(s):  
Sharon R. Bullimore ◽  
Sana Siddiqui ◽  
Graham M. Donovan ◽  
James G. Martin ◽  
James Sneyd ◽  
...  

Airway hyperresponsiveness (AHR) is a characteristic feature of asthma. It has been proposed that an increase in the shortening velocity of airway smooth muscle (ASM) could contribute to AHR. To address this possibility, we tested whether an increase in the isotonic shortening velocity of ASM is associated with an increase in the rate and total amount of shortening when ASM is subjected to an oscillating load, as occurs during breathing. Experiments were performed in vitro using 27 rat tracheal ASM strips supramaximally stimulated with methacholine. Isotonic velocity at 20% isometric force (Fiso) was measured, and then the load on the muscle was varied sinusoidally (0.33 ± 0.25 Fiso, 1.2 Hz) for 20 min, while muscle length was measured. A large amplitude oscillation was applied every 4 min to simulate a deep breath. We found that: 1) ASM strips with a higher isotonic velocity shortened more quickly during the force oscillations, both initially ( P < 0.001) and after the simulated deep breaths ( P = 0.002); 2) ASM strips with a higher isotonic velocity exhibited a greater total shortening during the force oscillation protocol ( P < 0.005); and 3) the effect of an increase in isotonic velocity was at least comparable in magnitude to the effect of a proportional increase in ASM force-generating capacity. A cross-bridge model showed that an increase in the total amount of shortening with increased isotonic velocity could be explained by a change in either the cycling rate of phosphorylated cross bridges or the rate of myosin light chain phosphorylation. We conclude that, if asthma involves an increase in ASM velocity, this could be an important factor in the associated AHR.


2010 ◽  
Vol 298 (3) ◽  
pp. L277-L287 ◽  
Author(s):  
Ynuk Bossé ◽  
Dennis Solomon ◽  
Leslie Y. M. Chin ◽  
Kevin Lian ◽  
Peter D. Paré ◽  
...  

The amplitude of strain in airway smooth muscle (ASM) produced by oscillatory perturbations such as tidal breathing or deep inspiration (DI) influences the force loss in the muscle and is therefore a key determinant of the bronchoprotective and bronchodilatory effects of these breathing maneuvers. The stiffness of unstimulated ASM (passive stiffness) directly influences the amplitude of strain. The nature of the passive stiffness is, however, not clear. In this study, we measured the passive stiffness of ovine ASM at different muscle lengths (relative to in situ length, which was used as a reference length, Lref) and states of adaptation to gain insights into the origin of this muscle property. The results showed that the passive stiffness was relatively independent of muscle length, possessing a constant plateau value over a length range from 0.62 to 1.25 Lref. Following a halving of ASM length, passive stiffness decreased substantially (by 71%) but redeveloped over time (∼30 min) at the shorter length to reach 65% of the stiffness value at Lref, provided that the muscle was stimulated to contract at least once over a ∼30-min period. The redevelopment and maintenance of passive stiffness were dependent on the presence of Ca2+ but unaffected by latrunculin B, an inhibitor of actin filament polymerization. The maintenance of passive stiffness was also not affected by blocking myosin cross-bridge cycling using a myosin light chain kinase inhibitor or by blocking the Rho-Rho kinase (RhoK) pathway using a RhoK inhibitor. Our results suggest that the passive stiffness of ASM is labile and capable of redevelopment following length reduction. Redevelopment and maintenance of passive stiffness following muscle shortening could contribute to airway hyperresponsiveness by attenuating the airway wall strain induced by tidal breathing and DI.


2003 ◽  
Vol 285 (2) ◽  
pp. C384-C390 ◽  
Author(s):  
Kuo-Hsing Kuo ◽  
Ana M. Herrera ◽  
Lu Wang ◽  
Peter D. Paré ◽  
Lincoln E. Ford ◽  
...  

Airway smooth muscle is able to adapt and maintain a nearly constant maximal force generation over a large length range. This implies that a fixed filament lattice such as that found in striated muscle may not exist in this tissue and that plastic remodeling of its contractile and cytoskeletal filaments may be involved in the process of length adaptation that optimizes contractile filament overlap. Here, we show that isometric force produced by airway smooth muscle is independent of muscle length over a twofold length change; cell cross-sectional area was inversely proportional to cell length, implying that the cell volume was conserved at different lengths; shortening velocity and myosin filament density varied similarly to length change: increased by 69.4% ± 5.7 (SE) and 76.0% ± 9.8, respectively, for a 100% increase in cell length. Muscle power output, ATPase rate, and myosin filament density also have the same dependence on muscle cell length: increased by 35.4% ± 6.7, 34.6% ± 3.4, and 35.6% ± 10.6, respectively, for a 50% increase in cell length. The data can be explained by a model in which additional contractile units containing myosin filaments are formed and placed in series with existing contractile units when the muscle is adapted at a longer length.


2009 ◽  
Vol 297 (2) ◽  
pp. L362-L372 ◽  
Author(s):  
J. H. T. Bates ◽  
S. R. Bullimore ◽  
A. Z. Politi ◽  
J. Sneyd ◽  
R. C. Anafi ◽  
...  

Airway smooth muscle (ASM) is cyclically stretched during breathing, even in the active state, yet the factors determining its dynamic force-length behavior remain incompletely understood. We developed a model of the activated ASM strip and compared its behavior to that observed in strips of rat trachealis muscle stimulated with methacholine. The model consists of a nonlinear viscoelastic element (Kelvin body) in series with a force generator obeying the Hill force-velocity relationship. Isometric force in the model is proportional to the number of bound crossbridges, the attachment of which follows first-order kinetics. Crossbridges detach at a rate proportional to the rate of change of muscle length. The model accurately accounts for the experimentally observed transient and steady-state oscillatory force-length behavior of both passive and activated ASM. However, the model does not predict the sustained decrement in isometric force seen when activated strips of ASM are subjected briefly to large stretches. We speculate that this force decrement reflects some mechanism unrelated to the cycling of crossbridges, and which may be involved in the reversal of bronchoconstriction induced by a deep inflation of the lungs in vivo.


1985 ◽  
Vol 249 (3) ◽  
pp. C238-C247 ◽  
Author(s):  
K. E. Kamm ◽  
J. T. Stull

Field stimulation of intrinsic nerves in bovine tracheal smooth muscle strips elicited atropine-sensitive contractions that were more rapid than those obtained by addition of carbamylcholine to the bathing medium. These stimulus conditions were used to improve estimates of maximal rates of activation as indicated by myosin light chain phosphorylation, maximal shortening velocity (Vo), and isometric force. Maximal values of Vo [0.25 X optimal muscle length X s-1] and light chain phosphorylation (0.65 mol phosphate/mol light chain) were attained after 5 s of stimulation and preceded maximal force (60 s). Force gradually fell to 0.85 times maximal values during 30 min of stimulation, while both light chain phosphorylation and Vo declined to 0.3 times the maximal value. The temporal correlation between light chain phosphorylation and Vo supports the hypothesis that myosin phosphorylation in smooth muscle functions in regulating cross-bridge cycling rates. Myosin was dephosphorylated during relaxation with a half time of 2.7 s. Calculated maximal cellular rates of light chain phosphorylation were similar to measured values, indicating that most of the kinase was activated on stimulation.


1997 ◽  
Vol 83 (3) ◽  
pp. 731-738 ◽  
Author(s):  
X. Shen ◽  
M. F. Wu ◽  
R. S. Tepper ◽  
S. J. Gunst

Shen, X., M. F. Wu, R. S. Tepper, and S. J. Gunst. Mechanisms for the mechanical response of airway smooth muscle to length oscillation. J. Appl. Physiol. 83(3): 731–738, 1997.—Airway smooth muscle tone in vitro is profoundly affected by oscillations in muscle length, suggesting that the effects of lung volume changes on airway tone result from direct effects of stretch on the airway smooth muscle. We analyzed the effect of length oscillation on active force and length-force hysteresis in canine tracheal smooth muscle at different oscillation rates and amplitudes during contraction with acetylcholine. During the shortening phase of the length oscillation cycle, the active force generated by the smooth muscle decreased markedly below the isometric force but returned to isometric force as the muscle was lengthened. Results indicate that at rates comparable to those during tidal breathing, active shortening and yielding of contractile elements contributes to the modulation of force during length oscillation; however, the depression of force during shortening cannot be accounted for by cross-bridge properties, shortening-induced cross-bridge deactivation, or active relaxation. We conclude that the depression of contractility may be a function of the plasticity of the cellular organization of contractile filaments, which enables contractile element length to be reset in relation to smooth muscle cell length as a result of smooth muscle stretch.


1995 ◽  
Vol 268 (2) ◽  
pp. L166-L172 ◽  
Author(s):  
K. A. Jones ◽  
R. R. Lorenz ◽  
N. Morimoto ◽  
G. C. Sieck ◽  
D. O. Warner

Halothane relaxes airway smooth muscle in part by a direct effect on the smooth muscle cell. The purpose of this study was to investigate the possible role of cyclic nucleotides in this direct effect. Strips of canine tracheal smooth muscle in vitro were contracted with acetylcholine (ACh) and then exposed to 0.7-2.6% halothane. Isometric force and the intracellular concentrations of adenosine cyclic 3',5'-monophosphate ([cAMP]i) guanosine cyclic 3',5'-monophosphate ([cGMP]i), and free calcium ([Ca2+]i, using the fluorescent Ca(2+)-sensitive dye fura 2) were measured. ACh caused significant increases in force, [cAMP]i, [cGMP]i, and [Ca2+]i. Subsequent exposure of the strips to halothane caused an additional increase in [cAMP]i, decreases in force and [Ca2+]i, and no effect on [cGMP]i. The additional increase in [cAMP]i was similar to that produced by a concentration of isoproterenol (0.03 microM) that caused equipotent relaxation. Indomethacin abolished the increase in [cAMP]i produced by ACh and abolished the additional increase in [cAMP]i produced by halothane. In contrast, indomethacin had no effect on the decreases in force and [Ca2+]i. These findings suggest that in canine tracheal smooth muscle contracted with ACh 1) halothane increases [cAMP]i by a cyclooxygenase-dependent mechanism and 2) the increase in [cAMP]i produced by halothane is not responsible for the relaxation or the decrease in [Ca2+]i.


Sign in / Sign up

Export Citation Format

Share Document