scholarly journals Artificial gravity as a countermeasure to microgravity: a pilot study examining the effects on knee extensor and plantar flexor muscle groups

2009 ◽  
Vol 107 (1) ◽  
pp. 39-46 ◽  
Author(s):  
V. J. Caiozzo ◽  
F. Haddad ◽  
S. Lee ◽  
M. Baker ◽  
William Paloski ◽  
...  

The goal of this project was to examine the effects of artificial gravity (AG) on skeletal muscle strength and key anabolic/catabolic markers known to regulate muscle mass. Two groups of subjects were selected for study: 1) a 21 day-bed rest (BR) group ( n = 7) and 2) an AG group ( n = 8), which was subjected to 21 days of 6° head-down tilt bed rest plus daily 1-h exposures to AG (2.5 G at the feet). Centrifugation was produced using a short-arm centrifuge with the foot plate ∼220 cm from the center of rotation. The torque-velocity relationships of the knee extensors and plantar flexors of the ankle were determined pre- and posttreatment. Muscle biopsy samples obtained from the vastus lateralis and soleus muscles were used for a series of gene expression analyses (mRNA abundance) of key factors implicated in the anabolic vs. catabolic state of the muscle. Post/pre torque-velocity determinations revealed greater decrements in knee extensor performance in the BR vs. AG group ( P < 0.04). The plantar flexors of the AG subjects actually demonstrated a net gain in the torque-velocity relationship, whereas in the BR group, the responses declined (AG vs. BR, P < 0.001). Muscle fiber cross-sectional area decreased by ∼20% in the BR group, whereas no losses were evident in the AG group. RT-PCR analyses of muscle biopsy specimens demonstrated that markers of growth and cytoskeletal integrity were higher in the AG group, whereas catabolic markers were elevated in the BR group. Importantly, these patterns were seen in both muscles. We conclude that paradigms of AG have the potential to maintain the functional, biochemical, and structural homeostasis of skeletal muscle in the face of chronic unloading.

2019 ◽  
Vol 44 (8) ◽  
pp. 827-833 ◽  
Author(s):  
Tommy R. Lundberg ◽  
Maria T. García-Gutiérrez ◽  
Mirko Mandić ◽  
Mats Lilja ◽  
Rodrigo Fernandez-Gonzalo

This study compared the effects of the most frequently employed protocols of flywheel (FW) versus weight-stack (WS) resistance exercise (RE) on regional and muscle-specific adaptations of the knee extensors. Sixteen men (n = 8) and women (n = 8) performed 8 weeks (2–3 days/week) of knee extension RE employing FW technology on 1 leg (4 × 7 repetitions), while the contralateral leg performed regular WS training (4 × 8–12 repetitions). Maximal strength (1-repetition maximum (1RM) in WS) and peak FW power were determined before and after training for both legs. Partial muscle volume of vastus lateralis (VL), vastus medialis (VM), vastus intermedius (VI), and rectus femoris (RF) were measured using magnetic resonance imaging. Additionally, quadriceps cross-sectional area was assessed at a proximal and a distal site. There were no differences (P > 0.05) between FW versus WS in muscle hypertrophy of the quadriceps femoris (8% vs. 9%), VL (10% vs. 11%), VM (6% vs. 8%), VI (5% vs. 5%), or RF (17% vs. 17%). Muscle hypertrophy tended (P = 0.09) to be greater at the distal compared with the proximal site, but there was no interaction with exercise method. Increases in 1RM and FW peak power were similar across legs, yet the increase in 1RM was greater in men (31%) than in women (20%). These findings suggest that FW and WS training induces comparable muscle-specific hypertrophy of the knee extensors. Given that these robust muscular adaptations were brought about with markedly fewer repetitions in the FW compared with WS, it seems FW training can be recommended as a particularly time-efficient exercise paradigm.


2003 ◽  
Vol 95 (4) ◽  
pp. 1485-1492 ◽  
Author(s):  
Minoru Shinohara ◽  
Yasuhide Yoshitake ◽  
Motoki Kouzaki ◽  
Hideoki Fukuoka ◽  
Tetsuo Fukunaga

The purpose of the study was to determine the effect of bed rest with or without strength training on torque fluctuations and activation strategy of the muscles. Twelve young men participated in a 20-day bed rest study. Subjects were divided into a non-training group (BRCon) and a strength-training group (BRTr). The training comprised dynamic calf-raise and leg-press exercises. Before and after bed rest, subjects performed maximal contractions and steady submaximal isometric contractions of the ankle extensor muscles and of the knee extensor muscles (2.5-10% of maximal torque). Maximal torque decreased for both the ankle extensors (9%, P < 0.05) and knee extensors (16%, P < 0.05) in BRCon but not in BRTr. For the ankle extensors, the coefficient of variation (CV) for torque increased in both groups ( P < 0.05), with a greater amount ( P < 0.05) in BRCon (88%) compared with BRTr (41%). For the knee extensors, an increase in the CV for torque was observed only in BRCon (22%). The increase in the CV for torque in BRCon accompanied the greater changes in electromyogram amplitude of medial gastrocnemius (122%) and vastus lateralis (59%) compared with BRTr ( P < 0.05). The results indicate that fluctuations in torque during submaximal contractions of the extensor muscles in the leg increase after bed rest and that strength training counteracted the decline in performance. The response varied across muscle groups. Alterations in muscle activation may lead to an increase in fluctuations in motor output after bed rest.


2020 ◽  
Vol 45 (4) ◽  
pp. 368-375 ◽  
Author(s):  
Joshua P. Nederveen ◽  
George Ibrahim ◽  
Stephen A. Fortino ◽  
Tim Snijders ◽  
Dinesh Kumbhare ◽  
...  

The percutaneous muscle biopsy procedure is an invaluable tool for characterizing skeletal muscle and capillarization. Little is known about methodological or biological variation stemming from the technique in heterogeneous muscle. Five muscle biopsies were taken from the vastus lateralis of a group of young men (n = 29, 22 ± 1 years) over a 96-h period. We investigated the repeatability of fibre distribution, indices of muscle capillarization and perfusion, and myofibre characteristics. No differences between the biopsies were reported in myofibre type distribution, cross-sectional area (CSA), and perimeter. Capillary-to-fibre perimeter exchange index and individual capillary-fibre contacts were unchanged with respect to the location of the muscle biopsy and index of capillarization. The variability in the sampling distribution of fibre type specific muscle CSA increased when fewer than 150 muscle fibres were quantified. Variability in fibre type distribution increased when fewer than 150 muscle fibres were quantified. Myofibre characteristics and indices of capillarization are largely consistent throughout the vastus lateralis when assessed via the skeletal muscle biopsy technique. Novelty Markers of muscle capillarization and perfusion were unchanged across multiple sites of the human vastus lateralis. Myofibre characteristics such as muscle cross-sectional area, perimeter, and fibre type distribution were also unchanged. Variation of muscle CSA was higher when fewer than 150 muscle fibres were quantified.


2009 ◽  
Vol 107 (1) ◽  
pp. 34-38 ◽  
Author(s):  
T. B. Symons ◽  
M. Sheffield-Moore ◽  
D. L. Chinkes ◽  
A. A. Ferrando ◽  
D. Paddon-Jones

We sought to determine the effects of longitudinal loading (artificial gravity) on skeletal muscle protein kinetics in 15 healthy young males after 21 days of 6° head-down tilt bed rest [experimental treatment (Exp) group: n = 8, 31 ± 1 yr; control (Con) group; n = 7, 28 ± 1 yr, means ± SE]. On days 1 and 21 of bed rest, postabsorptive venous blood samples and muscle biopsies (vastus lateralis and soleus) were obtained during a 1-h pulse bolus infusion protocol (0 min, l-[ ring-13C6]phenylalanine, 35 μmol/kg; 30 min, l-[ ring-15N]phenylalanine, 35 μmol/kg). Outcome measures included mixed muscle fractional synthesis (FSR) and breakdown rates (FBR). The Exp group experienced 1 h of longitudinal loading (2.5G at the feet) via a short-radius centrifuge during each day of bed rest. Mixed muscle FSR in the Con group was reduced by 48.5% ( day 1, 0.081 ± 0.000%/h vs. day 21, 0.042 ± 0.000%/h; P = 0.001) in vastus lateralis after 21 days of bed rest, whereas the Exp group maintained their rate of protein synthesis. A similar but nonsignificant change in FSR was noted for the soleus muscle (Exp, −7%; Con, −22%). No changes in muscle protein breakdown were observed. In conclusion, 1 h of daily exposure to artificial gravity maintained the rate of protein synthesis of the vastus lateralis and may represent an effective adjunct countermeasure to combat the loss of muscle mass and functional during extended spaceflight.


2017 ◽  
Vol 123 (5) ◽  
pp. 1092-1100 ◽  
Author(s):  
Robert A. Standley ◽  
Giovanna Distefano ◽  
Suzette L. Pereira ◽  
Min Tian ◽  
Owen J. Kelly ◽  
...  

Loss of muscle mass during periods of disuse likely has negative health consequences for older adults. We have previously shown that β-hydroxy-β-methylbutyrate (HMB) supplementation during 10 days of strict bed rest (BR) attenuates the loss of lean mass in older adults. To elucidate potential molecular mechanisms of HMB effects on muscle during BR and resistance training rehabilitation (RT), we examined mediators of skeletal muscle mitochondrial dynamics, autophagy and atrophy, and intramyocellular lipids. Nineteen older adults (60–76 yr) completed 10 days BR followed by 8-wk RT rehabilitation. Subjects were randomized to either HMB (3 g/day HMB; n = 11) or control (CON; n = 8) groups. Skeletal muscle cross-sectional area (CSA) was determined by histology from percutaneous vastus lateralis biopsies. We measured protein markers of mitochondrial content [oxidative phosphorylation (OXPHOS)], fusion and fission (MFN2, OPA1, FIS1, and DRP1), autophagy (Beclin1, LC3B, and BNIP3), and atrophy [poly-ubiquinated proteins (poly-ub)] by Western blot. Fatty acid composition of several lipid classes in skeletal muscle was measured by infusion-MS analysis. Poly-ub proteins and OXPHOS complex I increased in both groups following BR ( P < 0.05, main effect for time), and muscle triglyceride content tended to increase following BR in the HMB group ( P = 0.055). RT rehabilitation increased OXPHOS complex II protein ( P < 0.05), and total OXPHOS content tended ( P = 0.0504) to be higher in HMB group. In addition, higher levels of DRP1 and MFN2 were maintained in the HMB group after RT ( P < 0.05). BNIP3 and poly-ub proteins were significantly reduced following rehabilitation in both groups ( P < 0.05). Collectively, these data suggest that HMB influences mitochondrial dynamics and lipid metabolism during disuse atrophy and rehabilitation. NEW & NOTEWORTHY Mitochondrial content and dynamics remained unchanged over 10 days of BR in older adults. HMB stimulated intramuscular lipid storage as triacylglycerol following 10 days of bed rest (BR) and maintained higher mitochondrial OXPHOS content and dynamics during the 8-wk resistance exercise rehabilitation program.


1997 ◽  
Vol 82 (1) ◽  
pp. 182-188 ◽  
Author(s):  
H. E. Berg ◽  
L. Larsson ◽  
P. A. Tesch

Berg, H. E., L. Larsson, and P. A. Tesch. Lower limb skeletal muscle function after 6 wk of bed rest. J. Appl. Physiol. 82(1): 182–188, 1997.—Force, electromyographic (EMG) activity, muscle mass, and fiber characteristics were studied in seven healthy men before and after 6 wk of bed rest. Maximum voluntary isometric and concentric knee extensor torque decreased ( P < 0.05) uniformly across angular velocities by 25–30% after bed rest. Maximum quadricep rectified EMG decreased by 19 ± 23%, whereas submaximum (100-Nm isometric action) EMG increased by 44 ± 28%. Knee extensor muscle cross-sectional area (CSA), assessed by using magnetic resonance imaging, decreased by 14 ± 4%. Maximum torque per knee extensor CSA decreased by 13 ± 9%. Vastus lateralis fiber CSA decreased 18 ± 14%. Neither type I, IIA, and IIB fiber percentages nor their relative proportions of myosin heavy chain (MHC) isoforms were altered after bed rest. Because the decline in strength could not be entirely accounted for by decreased muscle CSA, it is suggested that the strength loss is also due to factors resulting in decreased neural input to muscle and/or reduced specific tension of muscle, as evidenced by a decreased torque/EMG ratio. Additionally, it is concluded that muscle unloading in humans does not induce important changes in fiber type or MHC composition or in vivo muscle contractile properties.


1998 ◽  
Vol 84 (1) ◽  
pp. 157-163 ◽  
Author(s):  
Marcas M. Bamman ◽  
Mark S. F. Clarke ◽  
Daniel L. Feeback ◽  
Robert J. Talmadge ◽  
Bruce R. Stevens ◽  
...  

Bamman, Marcas M., Mark S. F. Clarke, Daniel L. Feeback, Robert J. Talmadge, Bruce R. Stevens, Steven A. Lieberman, and Michael C. Greenisen. Impact of resistance exercise during bed rest on skeletal muscle sarcopenia and myosin isoform distribution. J. Appl. Physiol. 84(1): 157–163, 1998.—Because resistance exercise (REx) and bed-rest unloading (BRU) are associated with opposing adaptations, our purpose was to test the efficacy of REx against the effects of 14 days of BRU on the knee-extensor muscle group. Sixteen healthy men were randomly assigned to no exercise (NoEx; n = 8) or REx ( n = 8). REx performed five sets of leg press exercise with 80–85% of one repetition maximum (1 RM) every other day during BRU. Muscle samples were removed from the vastus lateralis muscle by percutaneous needle biopsy. Myofiber distribution was determined immunohistochemically with three monoclonal antibodies against myosin heavy chain (MHC) isoforms (I, IIa, IIx). MHC distribution was further assessed by quantitative gel electrophoresis. Dynamic 1-RM leg press and unilateral maximum voluntary isometric contraction (MVC) were determined. Maximal neural activation (root mean squared electromyogram) and rate of torque development (RTD) were measured during MVC. Reductions ( P < 0.05) in type I (15%) and type II (17%) myofiber cross-sectional areas were found in NoEx but not in REx. Electrophoresis revealed no changes in MHC isoform distribution. The percentage of type IIx myofibers decreased ( P < 0.05) in REx from 9 to 2% and did not change in NoEx. 1 RM was reduced ( P < 0.05) by 9% in NoEx but was unchanged in REx. MVC fell by 15 and 13% in NoEx and REx, respectively. The agonist-to-antagonist root mean squared electromyogram ratio decreased ( P < 0.05) 19% in REx. RTD slowed ( P < 0.05) by 54% in NoEx only. Results indicate that REx prevented BRU-induced myofiber atrophy and also maintained training-specific strength. Unlike spaceflight, BRU did not induce shifts in myosin phenotype. The reported benefits of REx may prove useful in prescribing exercise for astronauts in microgravity.


2010 ◽  
Vol 90 (12) ◽  
pp. 1774-1782 ◽  
Author(s):  
Marc Roig ◽  
Janice J. Eng ◽  
Donna L. MacIntyre ◽  
Jeremy D. Road ◽  
W. Darlene Reid

Background The Stair Climb Power Test (SCPT) is a functional test associated with leg muscle power in older people. Objective The purposes of this study were to compare the results of the SCPT in people with chronic obstructive pulmonary disease (COPD) and people who were healthy and to explore associations of the SCPT with muscle strength (force-generating capacity) and functional performance. Design The study was a cross-sectional investigation. Methods Twenty-one people with COPD and a predicted mean (SD) percentage of forced expiratory volume in 1 second of 47.2 (12.9) and 21 people who were healthy and matched for age, sex, and body mass were tested with the SCPT. Knee extensor and flexor muscle torque was assessed with an isokinetic dynamometer. Functional performance was assessed with the Timed “Up & Go” Test (TUG) and the Six-Minute Walk Test (6MWT). Results People with COPD showed lower values on the SCPT (28%) and all torque measures (∼32%), except for eccentric knee flexor muscle torque. In people with COPD, performance on the TUG and 6MWT was lower by 23% and 28%, respectively. In people with COPD, the SCPT was moderately associated with knee extensor muscle isometric and eccentric torque (r≥.46) and strongly associated (r=.68) with the 6MWT. In people who were healthy, the association of the SCPT with knee extensor muscle torque tended to be stronger (r≥.66); however, no significant relationship between the SCPT and measures of functional performance was found. Limitations The observational design of the study and the use of a relatively small convenience sample limit the generalizability of the findings. Conclusions The SCPT is a simple and safe test associated with measures of functional performance in people with COPD. People with COPD show deficits on the SCPT. However, the SCPT is only moderately associated with muscle torque and thus cannot be used as a simple surrogate for muscle strength in people with COPD.


2018 ◽  
Vol 125 (5) ◽  
pp. 1636-1645 ◽  
Author(s):  
Kevin J. Gries ◽  
Ulrika Raue ◽  
Ryan K. Perkins ◽  
Kaleen M. Lavin ◽  
Brittany S. Overstreet ◽  
...  

The purpose of this study was to examine the effects of aerobic lifelong exercise (LLE) on maximum oxygen consumption (V̇o2max) and skeletal muscle metabolic fitness in trained women ( n = 7, 72 ± 2 yr) and men ( n = 21, 74 ± 1 yr) and compare them to old, healthy nonexercisers (OH; women: n = 10, 75 ± 1 yr; men: n = 10, 75 ± 1 yr) and young exercisers (YE; women: n = 10, 25 ± 1 yr; men: n = 10, 25 ± 1 yr). LLE men were further subdivided based on intensity of lifelong exercise and competitive status into performance (LLE-P, n = 14) and fitness (LLE-F, n = 7). On average, LLE exercised 5 day/wk for 7 h/wk over the past 52 ± 1 yr. Each subject performed a maximal cycle test to assess V̇o2maxand had a vastus lateralis muscle biopsy to examine capillarization and metabolic enzymes [citrate synthase, β-hydroxyacyl-CoA dehydrogenase (β-HAD), and glycogen phosphorylase]. V̇o2maxhad a hierarchical pattern (YE > LLE > OH, P < 0.05) for women (44 ± 2 > 26 ± 2 > 18 ± 1 ml·kg−1·min−1) and men (53 ± 3 > 34 ± 1 > 22 ± 1 ml·kg−1·min−1) and was greater ( P < 0.05) in LLE-P (38 ± 1 ml·kg−1·min−1) than LLE-F (27 ± 2 ml·kg−1·min−1). LLE men regardless of intensity and women had similar capillarization and aerobic enzyme activity (citrate synthase and β-HAD) as YE, which were 20%–90% greater ( P < 0.05) than OH. In summary, these data show a substantial V̇o2maxbenefit with LLE that tracked similarly between the sexes, with further enhancement in performance-trained men. For skeletal muscle, 50+ years of aerobic exercise fully preserved capillarization and aerobic enzymes, regardless of intensity. These data suggest that skeletal muscle metabolic fitness may be easier to maintain with lifelong aerobic exercise than more central aspects of the cardiovascular system.NEW & NOTEWORTHY Lifelong exercise (LLE) is a relatively new and evolving area of study with information especially limited in women and individuals with varying exercise intensity habits. These data show a substantial maximal oxygen consumption benefit with LLE that tracked similarly between the sexes. Our findings contribute to the very limited skeletal muscle biopsy data from LLE women (>70 yr), and similar to men, revealed a preserved metabolic phenotype comparable to young exercisers.


Author(s):  
Samuel Andrew Smith ◽  
Dominic Micklewright ◽  
Samantha Lee Winter ◽  
Alexis R. Mauger

Purpose: The intensity of exercise-induced pain (EIP) reflects the metabolic environment in the exercising muscle, so during endurance exercise this may inform the intelligent regulation of work rate. Conversely, the acute debilitating effects of EIP on motor unit recruitment could impair the estimation of force produced by the muscle and impair judgement of current exercise intensity. This study investigated whether muscle pain that feels like EIP, administered via intramuscular injection of hypertonic saline, interferes with the ability to accurately reproduce torque in a muscle group relevant to locomotive exercise. Methods: On separate days, fourteen participants completed an isometric torque reproduction task of the knee extensors. Participants were required to produce torque at 15 and 20% maximal voluntary torque (MVIT), without visual feedback before (Baseline), during (Pain/No Pain), and after (Recovery) an injection of 0.9% isotonic saline (Control) or 5.8% hypertonic saline (Experimental) into the vastus lateralis of the right leg. Results: An elevated reported intensity of pain, and a significantly increased variance in mean contraction torque at both 15% (P=0.049) and 20% (P=0.002) MVIT was observed in the Experimental compared to the Control condition. Both 15 and 20% target torques were performed at a similar pain intensity in the Experimental condition (15% MVIT, 4.2 ± 1.9; 20% MVIT, 4.5 ± 2.2; P>0.05). Conclusion: These findings demonstrate that the increased muscle pain from the injection of hypertonic saline impeded accurate reproduction of knee extensor torque. These findings have implications for the detrimental impact of EIP on exercise regulation and endurance performance.


Sign in / Sign up

Export Citation Format

Share Document