Effects of posture on regional pulmonary blood flow in rats as measured by PET

2010 ◽  
Vol 108 (2) ◽  
pp. 422-429 ◽  
Author(s):  
Torsten Richter ◽  
Ralf Bergmann ◽  
Jens Pietzsch ◽  
Inge Közle ◽  
Frank Hofheinz ◽  
...  

Using small animal PET with 68Ga-radiolabeled human albumin microspheres (Ga-68-microspheres), we investigated the effect of posture on regional pulmonary blood flow (PBF) in normal rats. This in vivo method is noninvasive and quantitative, and it allows for repeated longitudinal measurements. The purpose of the experiment was to quantify spatial differences in PBF in small animals in different postures. Two studies were performed in anesthetized, spontaneously breathing Wistar rats. Study 1 was designed to determine PBF in the prone and supine positions. Ga-68-microspheres were given to five prone and eight supine animals. We found that PBF increased in dorsal regions of supine animals (0.75) more than in prone animals (0.70; P = 0.037), according to a steeper vertical gradient of flow in supine than in prone animals. No differences in spatial heterogeneity were detected. Study 2 was designed to determine the effects of tissue distribution on PBF measurements. Because microspheres remained fixed in the lung, PET was performed on animals in the position in which they received Ga-68-microsphere injections and thereafter in the opposite posture. The distribution of PBF showed a preference for dorsal regions in both positions, but the distribution was dependent on the position during administration of the microspheres. We conclude that PET using Ga-68-microspheres can detect and quantify regional PBF in animals as small as the rat. PBF distributions differed between the prone and supine postures and were influenced by the distribution of lung tissue within the thorax.

2005 ◽  
Vol 4 (4) ◽  
pp. 7290.2005.05133 ◽  
Author(s):  
Matthew J. Hardwick ◽  
Ming-Kai Chen ◽  
Kwamena Baidoo ◽  
Martin G. Pomper ◽  
Tomás R. Guilarte

The ability to visualize the immune response with radioligands targeted to immune cells will enhance our understanding of cellular responses in inflammatory diseases. Peripheral benzodiazepine receptors (PBR) are present in monocytes and neutrophils as well as in lung tissue. We used lipopolysaccharide (LPS) as a model of inflammation to assess whether the PBR could be used as a noninvasive marker of inflammation in the lungs. Planar imaging of mice administrated 10 or 30 mg/kg LPS showed increased [123I]-( R)-PK11195 radioactivity in the thorax 2 days after LPS treatment relative to control. Following imaging, lungs from control and LPS-treated mice were harvested for ex vivo gamma counting and showed significantly increased radioactivity above control levels. The specificity of the PBR response was determined using a blocking dose of nonradioactive PK11195 given 30 min prior to radiotracer injection. Static planar images of the thorax of nonradioactive PK11195 pretreated animals showed a significantly lower level of radiotracer accumulation in control and in LPS-treated animals ( p < .05). These data show that LPS induces specific increases in PBR ligand binding in the lungs. We also used in vivo small-animal PET studies to demonstrate increased [11C]-( R)-PK11195 accumulation in the lungs of LPS-treated mice. This study suggests that measuring PBR expression using in vivo imaging techniques may be a useful biomarker to image lung inflammation.


2020 ◽  
Author(s):  
Chang-Hoon Choi ◽  
Carina Stegmayr ◽  
Aliaksandra Shymanskaya ◽  
Wieland A. Worthoff ◽  
Nuno A da Silva ◽  
...  

Abstract Background : In addition to the structural information afforded by 1 H MRI, the use of X-nuclei, such as sodium-23 ( 23 Na) or phosphorus-31 ( 31 P), offers important complementary information concerning physiological and biochemical parameters. By then combining this technique with PET, which provides valuable insight into a wide range of metabolic and molecular processes by using of a variety of radioactive tracers, the scope of medical imaging and diagnostics can be significantly increased. While the use of multimodal imaging is undoubtedly advantageous, identifying the optimal combination of these parameters to diagnose a specific dysfunction is very important and is advanced by the use of sophisticated imaging techniques in specific animal models.Methods : In this pilot study, rats with intracerebral 9L gliosarcomas were used to explore a combination of sequential multinuclear MRI using a sophisticated switchable coil set in a small animal 9.4 T MRI scanner and, subsequently, a small animal PET with the tumour tracer O-(2-[ 18 F]-fluoroethyl)-L-tyrosine ( 18 F-FET). This enabled in vivo multinuclear MR-PET experiments to be conducted without compromising the performance of either multinuclear MR or PET.Results : High-quality in vivo images and spectra including high-resolution 1 H imaging, 23 Na-weighted imaging, detection of 31 P metabolites and 18 F-FET uptake were obtained, allowing the characterisation of tumour tissues in comparison to a normal brain. These parameters have been shown to be useful in the identification of the genetic profile of gliomas, particularly concerning the mutation of the isocitrate hydrogenase gene, which is highly relevant for treatment strategy.Conclusions : The combination of multinuclear MR and PET in, for example, brain tumour models with specific genetic mutations will enable the physiological background of signal alterations to be explored and the identification of the optimal combination of imaging parameters for the non-invasive characterisation of the molecular profile of tumours.


2019 ◽  
Vol 12 (4) ◽  
pp. 166 ◽  
Author(s):  
Lauren L. Radford ◽  
Solana Fernandez ◽  
Rebecca Beacham ◽  
Retta El Sayed ◽  
Renata Farkas ◽  
...  

Overexpression of folate receptors (FRs) on different tumor types (e.g., ovarian, lung) make FRs attractive in vivo targets for directed diagnostic/therapeutic agents. Currently, no diagnostic agent suitable for positron emission tomography (PET) has been adopted for clinical FR imaging. In this work, two 55Co-labeled albumin-binding folate derivatives-[55Co]Co-cm10 and [55Co]Co-rf42-with characteristics suitable for PET imaging have been developed and evaluated. High radiochemical yields (≥95%) and in vitro stabilities (≥93%) were achieved for both compounds, and cell assays demonstrated FR-mediated uptake. Both 55Co-labeled folate conjugates demonstrated high tumor uptake of 17% injected activity per gram of tissue (IA/g) at 4 h in biodistribution studies performed in KB tumor-bearing mice. Renal uptake was similar to other albumin-binding folate derivatives, and liver uptake was lower than that of previously reported [64Cu]Cu-rf42. Small animal PET/CT images confirmed the biodistribution results and showed the clear delineation of FR-expressing tumors.


1996 ◽  
Vol 81 (3) ◽  
pp. 1051-1061 ◽  
Author(s):  
M. P. Hlastala ◽  
S. L. Bernard ◽  
H. H. Erickson ◽  
M. R. Fedde ◽  
E. M. Gaughan ◽  
...  

Recent studies using microspheres in dogs, pigs and goats have demonstrated considerable heterogeneity of pulmonary perfusion within isogravitational planes. These studies demonstrate a minimal role of gravity in determining pulmonary blood flow distribution. To test whether a gravitational gradient would be more apparent in an animal with large vertical lung height, we measured perfusion heterogeneity in horses (vertical lung height = approximately 55 cm). Four unanesthetized Thoroughbred geldings (422-500 kg) were studied awake in the standing position with fluorescent microspheres injected into a central vein. Between 1,621 and 2,503 pieces (1.3 cm3 in volume) were obtained from the lungs of each horse with spatial coordinates, and blood flow was determined for each piece. The coefficient of variation of blood flow throughout the lungs ranged between 22 and 57% among the horses. Considerable heterogeneity was seen in each isogravitational plane. The relationship between blood flow and vertical height up the lung was characterized by the slope and correlation coefficient of a least squares regression analysis. The slopes within each horse ranged from -0.052 to +0.021 relative flow units/cm height up the lung, and the correlation coefficients varied from 0.12 to 0.75. A positive slope, indicating that flow increased with vertical distance up the lung (opposite to gravity), was observed in three of the four horses. In addition, blood flow was uniformly low in three of the four horses in the most cranial portions of the lungs. We conclude that in lungs of resting unanesthetized horses, animals with a large lung height, there is no consistent vertical gradient to pulmonary blood flow and there is a considerable degree of perfusion heterogeneity, indicating that gravity alone does not play the major role in determining blood flow distribution.


2015 ◽  
Vol 308 (12) ◽  
pp. L1224-L1236 ◽  
Author(s):  
Yoshiko Kawai ◽  
Kumiko Ajima ◽  
Maki Kaidoh ◽  
Masao Sakaguchi ◽  
Satoshi Tanaka ◽  
...  

To further examine the validity of the proposed concept of pulmonary blood flow-dependent CO2 gas excretion in the lungs, we investigated the effects of intramediastinal balloon catheterization-, pulmonary artery catheterization-, or isoprenaline (ISP)-induced changes in pulmonary blood flow on the end-expiratory CO2 gas pressure (PeCO2), the maximal velocity of the pulmonary artery (Max Vp), systemic arterial pressure, and heart rate of anesthetized rabbits. We also evaluated the changes in the PeCO2 in clinical models of anemia or pulmonary embolism. An almost linear relationship was detected between the PeCO2 and Max Vp. In an experiment in which small pulmonary arteries were subjected to stenosis, the PeCO2 fell rapidly, and the speed of the reduction was dependent on the degree of stenosis. ISP produced significant increases in the PeCO2 of the anesthetized rabbits. Conversely, treatment with piceatannol or acetazolamide induced significant reductions in the PeCO2. Treatment with a cell surface F1/FO ATP synthase antibody caused significant reductions in the PeCO2 itself and the ISP-induced increase in the PeCO2. Neither the PeCO2 nor SAP was significantly influenced by marked anemia [%hematocrit (Ht), 70∼47%]. On the other hand, in the presence of less severe anemia (%Ht: 100∼70%) both the PeCO2 and SAP fell significantly when the rabbits' blood viscosity was decreased. The rabbits in which pulmonary embolisms were induced demonstrated significantly reduced PeCO2 values, which was compatible with the lowering of their Max Vp. In conclusion, we reaffirm the validity of the proposed concept of CO2 gas exchange in the lungs.


2007 ◽  
Vol 103 (1) ◽  
pp. 240-248 ◽  
Author(s):  
Susan R. Hopkins ◽  
A. Cortney Henderson ◽  
David L. Levin ◽  
Kei Yamada ◽  
Tatsuya Arai ◽  
...  

In vivo radioactive tracer and microsphere studies have differing conclusions as to the magnitude of the gravitational effect on the distribution of pulmonary blood flow. We hypothesized that some of the apparent vertical perfusion gradient in vivo is due to compression of dependent lung increasing local lung density and therefore perfusion/volume. To test this, six normal subjects underwent functional magnetic resonance imaging with arterial spin labeling during breath holding at functional residual capacity, and perfusion quantified in nonoverlapping 15 mm sagittal slices covering most of the right lung. Lung proton density was measured in the same slices using a short echo 2D-Fast Low-Angle SHot (FLASH) sequence. Mean perfusion was 1.7 ± 0.6 ml·min−1·cm−3 and was related to vertical height above the dependent lung (slope = −3%/cm, P < 0.0001). Lung density averaged 0.34 ± 0.08 g/cm3 and was also related to vertical height (slope = −4.9%/cm, P < 0.0001). By contrast, when perfusion was normalized for regional lung density, the slope of the height-perfusion relationship was not significantly different from zero ( P = 0.2). This suggests that in vivo variations in regional lung density affect the interpretation of vertical gradients in pulmonary blood flow and is consistent with a simple conceptual model: the lung behaves like a Slinky (Slinky is a registered trademark of Poof-Slinky Incorporated), a deformable spring distorting under its own weight. The greater density of lung tissue in the dependent regions of the lung is analogous to a greater number of coils in the dependent portion of the vertically oriented spring. This implies that measurements of perfusion in vivo will be influenced by density distributions and will differ from excised lungs where density gradients are reduced by processing.


2011 ◽  
Vol 69 (6) ◽  
pp. 852-857 ◽  
Author(s):  
Martin Walther ◽  
Peter Gebhardt ◽  
Philipp Grosse-Gehling ◽  
Lydia Würbach ◽  
Ingo Irmler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document