scholarly journals Mapping brain activation and information during category-specific visual working memory

2012 ◽  
Vol 107 (2) ◽  
pp. 628-639 ◽  
Author(s):  
David E. J. Linden ◽  
Nikolaas N. Oosterhof ◽  
Christoph Klein ◽  
Paul E. Downing

How is working memory for different visual categories supported in the brain? Do the same principles of cortical specialization that govern the initial processing and encoding of visual stimuli also apply to their short-term maintenance? We investigated these questions with a delayed discrimination paradigm for faces, bodies, flowers, and scenes and applied both univariate and multivariate analyses to functional magnetic resonance imaging (fMRI) data. Activity during encoding followed the well-known specialization in posterior areas. During the delay interval, activity shifted to frontal and parietal regions but was not specialized for category. Conversely, activity in visual areas returned to baseline during that interval but showed some evidence of category specialization on multivariate pattern analysis (MVPA). We conclude that principles of cortical activation differ between encoding and maintenance of visual material. Whereas perceptual processes rely on specialized regions in occipitotemporal cortex, maintenance involves the activation of a frontoparietal network that seems to require little specialization at the category level. We also confirm previous findings that MVPA can extract information from fMRI signals in the absence of suprathreshold activation and that such signals from visual areas can reflect the material stored in memory.

2019 ◽  
Author(s):  
Sirui Liu ◽  
Qing Yu ◽  
Peter U. Tse ◽  
Patrick Cavanagh

SummaryWhen perception differs from the physical stimulus, as it does for visual illusions and binocular rivalry, the opportunity arises to localize where perception emerges in the visual processing hierarchy. Representations prior to that stage differ from the eventual conscious percept even though they provide input to it. Here we investigate where and how a remarkable misperception of position emerges in the brain. This “double-drift” illusion causes a dramatic mismatch between retinal and perceived location, producing a perceived path that can differ from its physical path by 45° or more [1]. The deviations in the perceived trajectory can accumulate over at least a second [1] whereas other motion-induced position shifts accumulate over only 80 to 100 ms before saturating [2]. Using fMRI and multivariate pattern analysis, we find that the illusory path does not share activity patterns with a matched physical path in any early visual areas. In contrast, a whole-brain searchlight analysis reveals a shared representation in more anterior regions of the brain. These higher-order areas would have the longer time constants required to accumulate the small moment-to-moment position offsets that presumably originate in early visual cortices, and then transform these sensory inputs into a final conscious percept. The dissociation between perception and the activity in early sensory cortex suggests that perceived position does not emerge in what is traditionally regarded as the visual system but emerges instead at a much higher level.


Open Mind ◽  
2019 ◽  
Vol 3 ◽  
pp. 1-12 ◽  
Author(s):  
Sarah L. Dziura ◽  
James C. Thompson

Social functioning involves learning about the social networks in which we live and interact; knowing not just our friends, but also who is friends with our friends. This study utilized an incidental learning paradigm and representational similarity analysis (RSA), a functional MRI multivariate pattern analysis technique, to examine the relationship between learning social networks and the brain’s response to the faces within the networks. We found that accuracy of learning face pair relationships through observation is correlated with neural similarity patterns to those pairs in the left temporoparietal junction (TPJ), the left fusiform gyrus, and the subcallosal ventromedial prefrontal cortex (vmPFC), all areas previously implicated in social cognition. This model was also significant in portions of the cerebellum and thalamus. These results show that the similarity of neural patterns represent how accurately we understand the closeness of any two faces within a network. Our findings indicate that these areas of the brain not only process knowledge and understanding of others, but also support learning relations between individuals in groups.


2014 ◽  
Vol 26 (1) ◽  
pp. 132-142 ◽  
Author(s):  
Thomas A. Carlson ◽  
J. Brendan Ritchie ◽  
Nikolaus Kriegeskorte ◽  
Samir Durvasula ◽  
Junsheng Ma

How does the brain translate an internal representation of an object into a decision about the object's category? Recent studies have uncovered the structure of object representations in inferior temporal cortex (IT) using multivariate pattern analysis methods. These studies have shown that representations of individual object exemplars in IT occupy distinct locations in a high-dimensional activation space, with object exemplar representations clustering into distinguishable regions based on category (e.g., animate vs. inanimate objects). In this study, we hypothesized that a representational boundary between category representations in this activation space also constitutes a decision boundary for categorization. We show that behavioral RTs for categorizing objects are well described by our activation space hypothesis. Interpreted in terms of classical and contemporary models of decision-making, our results suggest that the process of settling on an internal representation of a stimulus is itself partially constitutive of decision-making for object categorization.


2017 ◽  
Author(s):  
Fernando M. Ramírez

AbstractThe use of multivariate pattern analysis (MVPA) methods has enjoyed this past decade a rapid increase in popularity among neuroscientists. More recently, similarity-based multivariate methods aiming not only to extract information regarding the class membership of stimuli from their associated brain patterns, say, decode a face from a potato, but to understand the form of the underlying representational structure associated with stimulus dimensions of interest, say, 2D grating or 3D face orientation, have flourished under the name of Representational Similarity Analysis (RSA). However, data-preprocessing steps implemented prior to RSA can significantly change the covariance (and correlation) structure of the data, hence possibly leading to representational confusion—i.e., a researcher inferring that brain area A encodes information according to representational scheme X, and not Y, when the opposite is true. Here, I demonstrate with simulations that time-series demeaning (including z-scoring) can plausibly lead to representational confusion. Further, I expose potential interactions between the effects of data demeaning and how the brain happens to encode information. Finally, I emphasize the importance in the context of similarity analyses of at least occasionally explicitly considering the direction of pattern vectors in multivariate space, rather than focusing exclusively on the relative location of their endpoints. Overall, I expect this article will promote awareness of the impact of data demeaning on inferences regarding representational structure and neural coding.


2014 ◽  
Vol 26 (3) ◽  
pp. 658-681 ◽  
Author(s):  
Andrew J. Anderson ◽  
Brian Murphy ◽  
Massimo Poesio

Most studies of conceptual knowledge in the brain focus on a narrow range of concrete conceptual categories, rely on the researchers' intuitions about which object belongs to these categories, and assume a broadly taxonomic organization of knowledge. In this fMRI study, we focus on concepts with a variety of concreteness levels; we use a state of the art lexical resource (WordNet 3.1) as the source for a relatively large number of category distinctions and compare a taxonomic style of organization with a domain-based model (an example domain is Law). Participants mentally simulated situations associated with concepts when cued by text stimuli. Using multivariate pattern analysis, we find evidence that all Taxonomic categories and Domains can be distinguished from fMRI data and also observe a clear concreteness effect: Tools and Locations can be reliably predicted for unseen participants, but less concrete categories (e.g., Attributes, Communications, Events, Social Roles) can only be reliably discriminated within participants. A second concreteness effect relates to the interaction of Domain and Taxonomic category membership: Domain (e.g., relation to Law vs. Music) can be better predicted for less concrete categories. We repeated the analysis within anatomical regions, observing discrimination between all/most categories in the left mid occipital and left mid temporal gyri, and more specialized discrimination for concrete categories Tool and Location in the left precentral and fusiform gyri, respectively. Highly concrete/abstract Taxonomic categories and Domain were segregated in frontal regions. We conclude that both Taxonomic and Domain class distinctions are relevant for interpreting neural structuring of concrete and abstract concepts.


2020 ◽  
Author(s):  
Zitong Lu ◽  
Yixuan Ku

AbstractIn studies of cognitive neuroscience, multivariate pattern analysis (MVPA) is widely used as it offers richer information than traditional univariate analysis. Representational similarity analysis (RSA), as one method of MVPA, has become an effective decoding method based on neural data by calculating the similarity between different representations in the brain under different conditions. Moreover, RSA is suitable for researchers to compare data from different modalities, and even bridge data from different species. However, previous toolboxes have been made to fit for specific datasets. Here, we develop a novel and easy-to-use toolbox based on Python named NeuroRA for representational analysis. Our toolbox aims at conducting cross-modal data analysis from multi-modal neural data (e.g. EEG, MEG, fNIRS, ECoG, sEEG, neuroelectrophysiology, fMRI), behavioral data, and computer simulated data. Compared with previous software packages, our toolbox is more comprehensive and powerful. By using NeuroRA, users can not only calculate the representational dissimilarity matrix (RDM), which reflects the representational similarity between different conditions, but also conduct a representational analysis among different RDMs to achieve a cross-modal comparison. In addition, users can calculate neural pattern similarity, spatiotemporal pattern similarity (STPS) and inter-subject correlation (ISC) with this toolbox. NeuroRA also provides users with functions performing statistical analysis, storage and visualization of results. We introduce the structure, modules, features, and algorithms of NeuroRA in this paper, as well as examples applying the toolbox in published datasets.


2017 ◽  
Author(s):  
J. Brendan Ritchie ◽  
David Michael Kaplan ◽  
Colin Klein

AbstractSince its introduction, multivariate pattern analysis (MVPA), or “neural decoding”, has transformed the field of cognitive neuroscience. Underlying its influence is a crucial inference, which we call the Decoder’s Dictum: if information can be decoded from patterns of neural activity, then this provides strong evidence about what information those patterns represent. Although the Dictum is a widely held and well-motivated principle in decoding research, it has received scant philosophical attention. We critically evaluate the Dictum, arguing that it is false: decodability is a poor guide for revealing the content of neural representations. However, we also suggest how the Dictum can be improved on, in order to better justify inferences about neural representation using MVPA.


2019 ◽  
Author(s):  
Zhiai Li ◽  
Hongbo Yu ◽  
Yongdi Zhou ◽  
Tobias Kalenscher ◽  
Xiaolin Zhou

AbstractPeople do not only feel guilty for transgressions of social norms/expectations that they are causally responsible for, but they also feel guilty for transgressions committed by those they identify as in-group (i.e., collective or group-based guilt). However, the neurocognitive basis of group-based guilt and its relation to personal guilt are unknown. To address these questions, we combined functional MRI with an interaction-based minimal group paradigm in which participants either directly caused harm to victims (i.e., personal guilt), or observed in-group members cause harm to the victims (i.e., group-based guilt). In three experiments (N = 90), we demonstrated that perceived shared responsibility with in-group members in the transgression predicted behavioral and neural manifestations of group-based guilt. Multivariate pattern analysis of the functional MRI data showed that group-based guilt recruited a similar brain representation in anterior middle cingulate cortex as personal guilt. These results have broaden our understanding of how group membership is integrated into social emotions.


2021 ◽  
Author(s):  
Veronika Vilgis ◽  
Debbie Yee ◽  
Tim J. Silk ◽  
Alasdair Vance

AbstractWorking memory deficits are common in attention-deficit/hyperactivity disorder (ADHD) and depression, two common neurodevelopmental disorders with overlapping cognitive profiles but distinct clinical presentation. Multivariate techniques have previously been utilized to understand working memory processes in functional brain networks in healthy adults, but have not yet been applied to investigate how working memory processes within the same networks differ within typical and atypical developing populations. We used multivariate pattern analysis (MVPA) to identify whether brain networks discriminated between spatial vs. verbal working memory processes in ADHD and Persistent Depressive Disorder (PDD). 36 male clinical participants and 19 typically developing (TD) boys participated in a fMRI scan while completing a verbal and a spatial working memory task. Within a priori functional brain networks (frontoparietal, default mode, salience) the TD group demonstrated differential response patterns to verbal and spatial working memory. Both clinical groups show less differentiation than TD, with neural profiles suggesting ADHD is associated with weaker differentiation in both frontoparietal and salience networks and PDD is associated with weaker differentiation in left frontoparietal and default mode networks. Whereas the TD group’s neural profile indicates network response patterns that are sensitive to task demands, the neural profiles of the ADHD and PDD group suggest less specificity in neural representations of spatial and verbal working memory. We highlight within-group classification as innovative tool for understanding the neural mechanisms of how cognitive processes may deviate in clinical disorders, an important intermediary step towards improving translational psychiatry to inform clinical diagnoses and treatment.


Sign in / Sign up

Export Citation Format

Share Document