scholarly journals The contradictory influence of velocity: representational momentum in the tactile modality

2019 ◽  
Vol 121 (6) ◽  
pp. 2358-2363 ◽  
Author(s):  
Simon Merz ◽  
Julia Deller ◽  
Hauke S. Meyerhoff ◽  
Charles Spence ◽  
Christian Frings

Representational momentum (RM) is the term used to describe a systematic mislocalization of dynamic stimuli, a forward shift; that is, an overestimation of the location of a stimulus along its anticipated trajectory. In the present study, we investigate the effect of velocity on tactile RM, because two distinct and contrasting predictions can be made, based on different theoretical accounts. According to classical accounts of RM, based on numerous visual and auditory RM studies, an increase of the forward shift with increasing target velocity is predicted. In contrast, theoretical accounts explaining spatiotemporal tactile illusions such as the tau or cutaneous rabbit effect predict a decrease of the forward shift with increasing target velocity. In three experiments reported here, a tactile experimental setup modeled on existing RM setups was implemented. Participants indicated the last location of a sequence of three tactile stimuli, which either did or did not imply motion in a consistent direction toward the elbow/wrist. Velocity was manipulated by changing the interstimulus interval as well as the duration of the stimuli. The results reveal that increasing target velocity led to a decrease and even a reversal of the forward shift, resulting in a backward shift. This result is consistent with predictions based on the evidence from tactile spatiotemporal illusions. The theoretical implications of these results for RM are discussed. NEW & NOTEWORTHY This study tests two distinct predictions concerning the influence of velocity on the localization of dynamic tactile stimuli. We demonstrate for tactile stimuli that with increasing velocity, a misperception in the direction of anticipated motion (termed “representational momentum”) turns into a misperception against the direction of motion. This result is in line with predictions based on tactile spatiotemporal illusions but challenges classical theoretical accounts of representational momentum based on evidence from vision and audition.

2011 ◽  
Vol 105 (2) ◽  
pp. 674-686 ◽  
Author(s):  
Tetsuo Kida ◽  
Koji Inui ◽  
Emi Tanaka ◽  
Ryusuke Kakigi

Numerous studies have demonstrated effects of spatial attention within single sensory modalities (within-modal spatial attention) and the effect of directing attention to one sense compared with the other senses (intermodal attention) on cortical neuronal activity. Furthermore, recent studies have been revealing that the effects of spatial attention directed to a certain location in a certain sense spread to the other senses at the same location in space (cross-modal spatial attention). The present study used magnetoencephalography to examine the temporal dynamics of the effects of within-modal and cross-modal spatial and intermodal attention on cortical processes responsive to visual stimuli. Visual or tactile stimuli were randomly presented on the left or right side at a random interstimulus interval and subjects directed attention to the left or right when vision or touch was a task-relevant modality. Sensor-space analysis showed that a response around the occipitotemporal region at around 150 ms after visual stimulation was significantly enhanced by within-modal, cross-modal spatial, and intermodal attention. A later response over the right frontal region at around 200 ms was enhanced by within-modal spatial and intermodal attention, but not by cross-modal spatial attention. These effects were estimated to originate from the occipitotemporal and lateral frontal areas, respectively. Thus the results suggest different spatiotemporal dynamics of neural representations of cross-modal attention and intermodal or within-modal attention.


1989 ◽  
Vol 68 (3_suppl) ◽  
pp. 1031-1039 ◽  
Author(s):  
Naohiro Minagawa ◽  
Kan Kashu

16 adult subjects performed a tactile recognition task. According to our 1984 study, half of the subjects were classified as having a left hemispheric preference for the processing of visual stimuli, while the other half were classified as having a right hemispheric preference for the processing of visual stimuli. The present task was conducted according to the S1–S2 matching paradigm. The standard stimulus was a readily recognizable object and was presented factually to either the left or right hand of each subject. The comparison stimulus was an object-picture and was presented visually by slide in a tachistoscope. The interstimulus interval was .05 sec. or 2.5 sec. Analysis indicated that the left-preference group showed right-hand superiority, and the right-preference group showed left-hand superiority. The notion of individual hemisphericity was supported in tactile processing.


1980 ◽  
Vol 50 (3_suppl) ◽  
pp. 1179-1191
Author(s):  
Dan L. Rogers ◽  
Austin Jones

In two experiments male undergraduate students ( ns = 24 and 28) were placed in a sensory deprivation environment to assess operationally defined drive properties of statistically defined information in the tactile sensory modality. In the first experiment it was demonstrated that there is a relationship between rate of responding for tactile information and duration of sensory deprivation, and a positive linear relationship between response rate and the relative information value of tactile stimuli. In the second experiment it was observed that information satiation in the tactile modality reduces drive for visual information. These results were discussed in relation to previous studies of auditory and visual information drives and were taken to support the existence of a generalized drive for information.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jan Zbinden ◽  
Max Ortiz-Catalan

AbstractEnabling sensory feedback in limb prostheses can reverse a damaged body image caused by amputation. The rubber hand illusion (RHI) is a popular paradigm to study ownership of artificial limbs and potentially useful to assess sensory feedback strategies. We investigated the RHI as means to induce ownership of a prosthetic hand by providing congruent visual and tactile stimuli. We elicited tactile sensations via electric stimulation of severed afferent nerve fibres in four participants with transhumeral amputation. Contrary to our expectations, they failed to experience the RHI. The sensations we elicited via nerve stimulation resemble tapping as opposed to stroking, as in the original RHI. We therefore investigated the effect of tapping versus stroking in 30 able-bodied subjects. We found that either tactile modality equally induced ownership in two-thirds of the subjects. Failure to induce the RHI in the intact hand of our participants with amputation later confirmed that they form part of the RHI-immune population. Conversely, these participants use neuromusculoskeletal prostheses with neural sensory feedback in their daily lives and reported said prostheses as part of their body. Our findings suggest that people immune to the RHI can nevertheless experience ownership over prosthetic limbs when used in daily life and accentuates a significant limitation of the RHI paradigm.


2010 ◽  
Vol 104 (5) ◽  
pp. 2850-2862 ◽  
Author(s):  
Yan Yang ◽  
Stephen G. Lisberger

We commonly think of motor learning as a gradual process that makes small, adaptive steps in a consistent direction. We now report evidence that learning in pursuit eye movements could start with large, transient short-term alterations that stoke a more gradual long-term process. Monkeys tracked a target that started moving horizontally or vertically. After 250 ms of motion had produced a preinstruction eye velocity close to target velocity, an orthogonal component of target motion created an instructive change in target direction that was randomly in one of the two directions along the orthogonal axis. The preinstruction eye velocity in each trial expressed single-trial learning as a bias toward the direction of the instruction in the prior trial. The single-trial learning was forgotten within 4 to 10 s. Two observations implied that single-trial learning was not simply cognitive anticipation. First, the magnitude of the trial-over-trial change in eye velocity depended on the ongoing eye velocity at the time of the instruction in the prior trial. Single-trial learning was negligible if the prior trial had provided a well-timed cue without evoking any preinstruction eye velocity. Second, regular alternation of the direction of the instructive target motion caused reactive rather than anticipatory trial-over-trial changes in eye velocity. Humans showed very different responses that appeared to be based on cognitive anticipation rather than learning. We suggest that single-trial learning results from a low-level learning mechanism and may be a necessary prerequisite for longer-term modifications that are more permanent.


1994 ◽  
Vol 7 (2) ◽  
pp. 67-77 ◽  
Author(s):  
J. B. Mattingley ◽  
J. L. Bradshaw

Visual reaction time (RT) studies on patients with right hemisphere (RH) damage have demonstrated that the attentional imbalance to stimuli occupying left and right positions exists even within the “intact” ipsilesional hemifield. The purpose of the present study was to test whether such patients might also exhibit relative left-sided impairments in the tactile modality, where stimuli and responses involve the index and middle fingers of the non-hemiplegic ipsilesional hand. Eight patients with RH damage, and eight matched normal controls, were tested using a vibrotactile choice RT paradigm, with the responding hand held in prone or supine posture, and located either at the body midline, or in left or right hemispace. Patients showed significantly slower RTs with the left than the right finger in both hand postures, a difference which remained constant as a function of the hemispatial location of the responding hand. In the prone posture, patients' left finger RTs were slower than those of controls, who showed no difference between left and right finger RTs, while their right finger RTs were faster than those of controls. In the supine posture, both patients and controls exhibited slower left than right finger RTs, though in controls the left finger disadvantage was attributed to biomechanical rather than attentional factors. Patients also made more errors with left than right finger stimuli, both as failures of detection and as incorrect responses, while controls made fewer errors overall and showed no differences between fingers. These data demonstrate a bias in the distribution of attention to tactile stimuli at an intra-limb level, and suggest that the attentional imbalance created by RH damage may be supramodal.


2021 ◽  
Vol 35 (1) ◽  
pp. 15-22
Author(s):  
Kohei Fuseda ◽  
Jun’ichi Katayama

Abstract. Interest is a positive emotion related to attention. The event-related brain potential (ERP) probe technique is a useful method to evaluate the level of interest in dynamic stimuli. However, even in the irrelevant probe technique, the probe is presented as a physical stimulus and steals the observer’s attentional resources, although no overt response is required. Therefore, the probe might become a problematic distractor, preventing deep immersion of participants. Heartbeat-evoked brain potential (HEP) is a brain activity, time-locked to a cardiac event. No probe is required to obtain HEP data. Thus, we aimed to investigate whether the HEP can be used to evaluate the level of interest. Twenty-four participants (12 males and 12 females) watched attractive and unattractive individuals of the opposite sex in interesting and uninteresting videos (7 min each), respectively. We performed two techniques each for both the interesting and the uninteresting videos: the ERP probe and the HEP techniques. In the former, somatosensory stimuli were presented as task-irrelevant probes while participants watched videos: frequent (80%) and infrequent (20%) stimuli were presented at each wrist in random order. In the latter, participants watched videos without the probe. The P2 amplitude in response to the somatosensory probe was smaller and the positive wave amplitudes of HEP were larger while watching the videos of attractive individuals than while watching the videos of unattractive ones. These results indicate that the HEP technique is a useful method to evaluate the level of interest without an external probe stimulus.


Author(s):  
Jennifer J. Freyd ◽  
Michael H. Kelly ◽  
Michael L. DeKay

Sign in / Sign up

Export Citation Format

Share Document