Nanostimulation: Manipulation of Single Neuron Activity by Juxtacellular Current Injection

2010 ◽  
Vol 103 (3) ◽  
pp. 1696-1704 ◽  
Author(s):  
Arthur R. Houweling ◽  
Guy Doron ◽  
Birgit C. Voigt ◽  
Lucas J. Herfst ◽  
Michael Brecht

In the mammalian brain, many thousands of single-neuron recording studies have been performed but less than 10 single-cell stimulation studies. This paucity of single-cell stimulation data reflects a lack of easily applicable single-cell stimulation techniques. We provide a detailed description of the procedures involved in nanostimulation, a single-cell stimulation method derived from the juxtacellular labeling technique. Nanostimulation is easy to apply and can be directed to a wide variety of identifiable neurons in anesthetized and awake animals. We describe the recording approach and the parameters of the electric configuration underlying nanostimulation. We use glass pipettes with a DC resistance of 4–7 MΩ. Obtaining the juxtacellular configuration requires a close contact between pipette tip and neuron and is associated with a several-fold increase in resistance to values ≥20 MΩ. The recorded action potential (AP) amplitude grows to ≥2 mV, and neurons can be activated with currents in the nanoampere range—hence the term nanostimulation. While exact AP timing has not been achieved, AP frequency and AP number can be parametrically controlled. We demonstrate that nanostimulation can also be used to selectively inhibit sensory responses in identifiable neurons. Nanostimulation is biophysically similar to electroporation, and based on this assumption, we argue that nanostimulation operates on membranes in the micrometer area directly below the pipette tip, where membrane pores are induced by high transmembrane voltage. There is strong evidence to suggest that nanostimulation selectively activates single neurons and that the evoked effects are cell-specific. Nanostimulation therefore holds great potential for elucidating how single neurons contribute to behavior.

2021 ◽  
Author(s):  
Peibo Xu ◽  
Jian Peng ◽  
Tingli Yuan ◽  
Zhaoqin Chen ◽  
Ziyan Wu ◽  
...  

Deciphering mesoscopic connectivity of the mammalian brain is a pivotal step in neuroscience. Most imaging-based conventional neuroanatomical tracing methods identify area-to-area or sparse single neuronal labeling information. Although recently developed barcode-based connectomics has been able to map a large number of single-neuron projections efficiently, there is a missing link in single-cell connectome and transcriptome. Here, combining single-cell RNA sequencing technology, we established a retro-AAV barcode-based multiplexed tracing method called MEGRE-seq (Multiplexed projEction neuRons retroGrade barcodE), which can resolve projectome and transcriptome of source neurons simultaneously. Using the ventromedial prefrontal cortex (vmPFC) as a proof-of-concept neocortical region, we investigated projection patterns of its excitatory neurons targeting five canonical brain regions, as well as corresponding transcriptional profiles. Dedicated, bifurcated or collateral projection patterns were inferred by digital projectome. In combination with simultaneously recovered transcriptome, we find that certain projection pattern has a preferential layer or neuron subtype bias. Further, we fitted single-neuron two-modal data into a machine learning-based model and delineated gene importance by each projection target. In summary, we anticipate that the new multiplexed digital connectome technique is potential to understand the organizing principle of the neural circuit by linking projectome and transcriptome.


2017 ◽  
Author(s):  
Frederic M. Stoll ◽  
Clayton P. Mosher ◽  
Sarita Tamang ◽  
Elisabeth A. Murray ◽  
Peter H. Rudebeck

ABSTRACTReward-guided behaviors require functional interaction between amygdala, orbital (OFC), and medial (MFC) divisions of prefrontal cortex, but the neural mechanisms underlying these interactions are unclear. Here, we used a decoding approach to analyze local field potentials (LFPs) recorded from OFC and MFC of monkeys engaged in a stimulus-choice task, before and after excitotoxic amygdala lesions. Whereas OFC LFP responses were strongly modulated by the amount of reward associated with each stimulus, MFC responses best represented which stimulus subjects decided to choose. This was counter to what we observed in the level of single neurons where their activity was closely associated with the value of the stimuli presented on each trial. After lesions of the amygdala, stimulus-reward value and choice encoding were reduced in OFC and MFC, respectively. However, while the lesion-induced decrease in OFC LFP encoding of stimulus-reward value mirrored changes in single neuron activity, reduced choice encoding in MFC LFPs was distinct from changes in single neuron activity. Thus, LFPs and single neurons represent different information required for decision-making in OFC and MFC. At the circuit-level, amygdala input to these two areas play a distinct role in stimulus-reward encoding in OFC and choice encoding in MFC.


Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 236-236
Author(s):  
Sheng-Tzung Tsai ◽  
Todd M Herrington ◽  
Shaun Patel ◽  
Kristen Kanoff ◽  
Alik S Widge ◽  
...  

Abstract INTRODUCTION The subthalamic nucleus (STN) is thought to be preferentially engaged during high-conflict decision making in humans. The population neuronal spike rate in the STN has been reported to increase during decision conflict. Conflict and feedback-related activity is also reflected in theta-band (4-8 Hz) oscillations in the STN. It remains unknown how single-neuron activity and theta-band local field potentials (LFP) oscillations interact to support decision making. METHODS We simultaneously recorded single-neuron spike activity and LFP from the STN of eight Parkinson's disease (PD) patients while they performed a novel Aversion-Reward conflict (ARC) task. Subjects decide whether to accept an offer of a monetary reward paired with a variable risk of an aversive air puff to the eye. By varying the reward and risk, we are able to study approach-avoidance decision making across a range of conflict. Using this task, we examined the mechanism of how theta-frequency oscillation and entrained single neurons involve humans' integration of cost and benefit and decision at various conflict statuses. RESULTS >The ARC task reveals diverse risk-reward tradeoff strategies of patients. Consistent across patients, there is a positive correlation between the degree of decision conflict and reaction time (e.g., higher conflict offers require longer for subjects to decide). During high-conflict decisions, LFP in STN had increased activity of sub-theta oscillation, while increased activity of theta was found during low-conflict decisions. Single-trial STN theta-band power was correlated with degree of decision conflict. Interestingly, the decision to take or forgo the reward is predicted by theta-frequency phase-locked of STN neurons. CONCLUSION Our findings support the hypothesis that theta-band oscillations in single-neurons reflect the engagement of STN during conflict decision making. Furthermore, STN neurons with theta-band entrainment correlate with willingness to approach risk to pursue reward.


2001 ◽  
Vol 86 (4) ◽  
pp. 1839-1857 ◽  
Author(s):  
Matthew D. McEchron ◽  
Aldis P. Weible ◽  
John F. Disterhoft

Rabbit trace eyeblink conditioning is a hippocampus-dependent task in which the auditory conditioned stimulus (CS) is separated from the corneal airpuff unconditioned stimulus (US) by a 500-ms empty trace interval. Young rabbits are able to associate the CS and US and acquire trace eyeblink conditioned responses (CRs); however, a subset of aged rabbits show poor learning on this task. Several studies have shown that CA1-hippocampal activity is altered by aging; however, it is unknown how aging affects the interaction of CA1 single neurons within local ensembles during learning. The present study examined the extracellular activity of CA1 pyramidal neurons within local ensembles in aged (29–34 mo) and young (3–6 mo) rabbits during 10 daily sessions (80 trials/session) of trace eyeblink conditioning. A single surgically implanted nonmovable stereotrode was used to record ensembles ranging in size from 2 to 12 separated single neurons. A total of six young and four aged rabbits acquired significant levels of CRs, whereas five aged rabbits showed very few CRs similar to a group of five young pseudoconditioned rabbits. Pyramidal cells (2,159 total) were recorded from these four groups during training. Increases in CA1 pyramidal cell firing to the CS and US were diminished in the aged nonlearners. Local ensembles from all groups contained heterogeneous types of pyramidal cell responses. Some cells showed increases while others showed decreases in firing during the trace eyeblink trial. Hierarchical clustering was used to isolate seven different classes of single-neuron responses that showed unique firing patterns during the trace conditioning trial. The proportion of cells in each group was similar for six of seven response classes. Unlike the excitatory modeling patterns reported in previous studies, three of seven response types (67% of recorded cells) exhibited some type of inhibitory decrease to the CS, US, or both. The single-neuron response classes showed different patterns of learning-related activity across training. Several of the single-neuron types from the aged nonlearners showed unique alterations in response magnitude to the CS and US. Cross-correlation analyses suggest that specific single-neuron types provide more correlated single-neuron activity to the ensemble processing of information. However, aged nonlearners showed a significantly lower level of coincident pyramidal cell firing for all cell types within local ensembles in CA1.


2015 ◽  
Vol 370 (1677) ◽  
pp. 20140204 ◽  
Author(s):  
Guy Doron ◽  
Michael Brecht

In recent years, single-cell stimulation experiments have resulted in substantial progress towards directly linking single-cell activity to movement and sensation. Recent advances in electrical recording and stimulation techniques have enabled control of single neuron spiking in vivo and have contributed to our understanding of neuronal coding schemes in the brain. Here, we review single neuron stimulation effects in different brain structures and how they vary with artificially inserted spike patterns. We briefly compare single neuron stimulation with other brain stimulation techniques. A key advantage of single neuron stimulation is the precise control of the evoked spiking patterns. Systematically varying spike patterns and measuring evoked movements and sensations enables ‘decoding’ of the single-cell spike patterns and provides insights into the readout mechanisms of sensory and motor cortical spikes.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gilad D Evrony ◽  
Eunjung Lee ◽  
Peter J Park ◽  
Christopher A Walsh

Whether somatic mutations contribute functional diversity to brain cells is a long-standing question. Single-neuron genomics enables direct measurement of somatic mutation rates in human brain and promises to answer this question. A recent study (<xref ref-type="bibr" rid="bib65">Upton et al., 2015</xref>) reported high rates of somatic LINE-1 element (L1) retrotransposition in the hippocampus and cerebral cortex that would have major implications for normal brain function, and suggested that these events preferentially impact genes important for neuronal function. We identify aspects of the single-cell sequencing approach, bioinformatic analysis, and validation methods that led to thousands of artifacts being interpreted as somatic mutation events. Our reanalysis supports a mutation frequency of approximately 0.2 events per cell, which is about fifty-fold lower than reported, confirming that L1 elements mobilize in some human neurons but indicating that L1 mosaicism is not ubiquitous. Through consideration of the challenges identified, we provide a foundation and framework for designing single-cell genomics studies.


Sign in / Sign up

Export Citation Format

Share Document