scholarly journals Savings in sensorimotor learning during balance-challenged walking but not reaching

Author(s):  
Amanda Bakkum ◽  
J. Maxwell Donelan ◽  
Daniel S. Marigold

Safe and successful motor performance relies on the ability to adapt to physiological and environmental change and retain what is learned. An open question is what factors maximize this retention? One overlooked factor is the degree to which balance is challenged during learning. We propose that the greater need for control and/or perceived threat of falling or injury associated with balance-challenging tasks increases the value assigned to maintaining a learned visuomotor mapping (i.e., the new relationship between visual input and motor output). And we propose that a greater-valued mapping is a more retainable mapping, as it serves to benefit future motor performance. Thus, we tested the hypothesis that challenging balance enhances motor memory, reflected by greater recall and faster relearning (i.e., savings). Four groups of participants adapted to a novel visuomotor mapping induced by prism lenses while performing a reaching or walking task, with and without an additional balance challenge. We found that challenging balance did not disrupt visuomotor adaptation during reaching or walking. We then probed recall and savings by having participants repeat the adaptation protocol one week later. For reaching, we found evidence of initial recall, though neither group demonstrated savings upon re-exposure to the prisms. In contrast, both walking groups demonstrated significant initial recall and savings. Additionally, we found that challenging balance significantly enhanced savings during walking. Taken together, our results demonstrate the robustness of motor memories formed during walking and highlight the potential influence of balance control on sensorimotor learning.

2021 ◽  
Author(s):  
Judith Nicolas ◽  
Brad R King ◽  
David Levesque ◽  
Latifa Lazzouni ◽  
Emily BJ Coffey ◽  
...  

Targeted memory reactivation (TMR) during post-learning sleep is known to enhance motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR enhanced slow waves (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling between slow (0.3-2 Hz) and sigma (12-16 Hz) oscillations after the SW peak was related to higher TMR effect on performance. Importantly, sounds that were not associated to learning strengthened SW-sigma coupling at the SW trough and the increase in sigma power nested in the trough of the potential evoked by these unassociated sounds was related to the TMR benefit. Altogether, our data suggest that, depending on their precise temporal coordination during post learning sleep, slow and sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant information; two processes that critically contribute to motor memory consolidation.


2014 ◽  
Vol 18 (2) ◽  
pp. 201-209 ◽  
Author(s):  
Caroline D. C. Altermann ◽  
Alexandre S. Martins ◽  
Felipe P. Carpes ◽  
Pâmela B. Mello-Carpes

Author(s):  
Xulu Sun ◽  
Daniel J. O’Shea ◽  
Matthew D. Golub ◽  
Eric M. Trautmann ◽  
Saurabh Vyas ◽  
...  

AbstractAnimals have a remarkable capacity to learn new motor skills, but it remains an open question as to how learning changes neural population dynamics underlying movement1. Specifically, we asked whether changes in neural population dynamics relate purely to newly learned movements or if additional patterns are generated that facilitate learning without matching motor output. We trained rhesus monkeys to learn a curl force field2 task that elicited new arm-movement kinetics for some but not all reach directions3,4. We found that along certain neural dimensions, preparatory activity in motor cortex reassociated existing activity patterns with new movements. These systematic changes were observed only for learning-altered reaches. Surprisingly, we also found prominent shifts of preparatory activity along a nearly orthogonal neural dimension. These changes in preparatory activity were observed uniformly for all reaches including those unaltered by learning. This uniform shift during learning implies formation of new neural activity patterns, which was not observed in other short-term learning contexts5–8. During a washout period when the curl field was removed, movement kinetics gradually reverted, but the learning-induced uniform shift of preparatory activity persisted and a second, orthogonal uniform shift occurred. This persistent shift may retain a motor memory of the learned field9–11, consistent with faster relearning of the same curl field observed behaviorally and neurally. When multiple different curl fields were learned sequentially, we found distinct uniform shifts, each reflecting the identity of the field applied and potentially separating the associated motor memories12,13. The neural geometry of these shifts in preparatory activity could serve to organize skill-specific changes in movement production, facilitating the acquisition and retention of a broad motor repertoire.


2021 ◽  
Author(s):  
Soraya Lahlou ◽  
Ella Gabitov ◽  
Lucy L. W. Owen ◽  
Daphna Shohamy ◽  
Madeleine Sharp

Patients with Parkinson's disease, who lose the dopaminergic projections to the striatum, are impaired in certain aspects of motor learning. Recent evidence suggests that, in addition to its role in motor performance, the striatum plays a key role in the memory of motor learning. Whether Parkinson's patients have impaired motor memory and whether motor memory is modulated by dopamine at the time of initial learning is unknown. To address these questions, we measured memory of a learned motor sequence in Parkinson's patients who were either On or Off their dopaminergic medications. We compared them to a group of older and younger controls. Contrary to our predictions, motor memory was not impaired in patients compared to older controls, and was not influenced by dopamine state at the time of initial learning. To probe post-learning consolidation processes, we also tested whether learning a new sequence shortly after learning the initial sequence would interfere with later memory. We found that, in contrast to younger adults, neither older adults nor patients were susceptible to this interference. These findings suggest that motor memory is preserved in Parkinson's patients and raise the possibility that motor memory in patients is supported by compensatory non-dopamine sensitive mechanisms. Furthermore, given the similar performance characteristics observed in the patients and older adults and the absence of an effect of dopamine, these results raise the possibility that aging and Parkinson's disease affect motor memory in similar ways.


2014 ◽  
Vol 112 (3) ◽  
pp. 594-602 ◽  
Author(s):  
Cong Yin ◽  
Kunlin Wei

Interference between successively learned tasks is widely investigated to study motor memory. However, how simultaneously learned motor memories interact with each other has been rarely studied despite its prevalence in daily life. Assuming that motor memory shares common neural mechanisms with declarative memory system, we made unintuitive predictions that mental rehearsal, as opposed to further practice, of one motor memory will temporarily impair the recall of another simultaneously learned memory. Subjects simultaneously learned two sensorimotor tasks, i.e., visuomotor rotation and gain. They retrieved one memory by either practice or mental rehearsal and then had their memory evaluated. We found that mental rehearsal, instead of execution, impaired the recall of unretrieved memory. This impairment was content-independent, i.e., retrieving either gain or rotation impaired the other memory. Hence, conscious recollection of one motor memory interferes with the recall of another memory. This is analogous to retrieval-induced forgetting in declarative memory, suggesting a common neural process across memory systems. Our findings indicate that motor imagery is sufficient to induce interference between motor memories. Mental rehearsal, currently widely regarded as beneficial for motor performance, negatively affects memory recall when it is exercised for a subset of memorized items.


2015 ◽  
Vol 114 (2) ◽  
pp. 969-977 ◽  
Author(s):  
David M. Huberdeau ◽  
Adrian M. Haith ◽  
John W. Krakauer

The term savings refers to faster motor adaptation upon reexposure to a previously experienced perturbation, a phenomenon thought to reflect the existence of a long-term motor memory. It is commonly assumed that sustained practice during the first perturbation exposure is necessary to create this memory. Here we sought to test this assumption by determining the minimum amount of experience necessary during initial adaptation to a visuomotor rotation to bring about savings the following day. Four groups of human subjects experienced 2, 5, 10, or 40 trials of a counterclockwise 30° cursor rotation during reaching movements on one day and were retested the following day to assay for savings. Groups that experienced five trials or more of adaptation on day 1 showed clear savings on day 2. Subjects in all groups learned significantly more from the first rotation trial on day 2 than on day 1, but this learning rate advantage was maintained only in groups that had reached asymptote during the initial exposure. Additional experiments revealed that savings occurred when the magnitude, but not the direction, of the rotation differed across exposures, and when a 5-min break, rather than an overnight one, separated the first and second exposure. The overall pattern of savings we observe across conditions can be explained as rapid retrieval of the state of learning attained during the first exposure rather than as modulation of sensitivity to error. We conclude that a long-term memory for compensating for a perturbation can be rapidly acquired and rapidly retrieved.


2020 ◽  
Author(s):  
Kwang S. Kim ◽  
Ayoub Daliri ◽  
John Randall Flanagan ◽  
Ludo Max

Stuttering is a neurodevelopmental disorder of speech fluency. Various experimental paradigms have demonstrated that affected individuals show limitations in sensorimotor control and learning. However, controversy exists regarding two core aspects of this perspective. First, it has been claimed that sensorimotor learning limitations are detectable only in adults who stutter (after years of coping with the disorder) but not during childhood close to the onset of stuttering. Second, it remains unclear whether stuttering individuals' sensorimotor learning limitations affect only speech movements or also unrelated effector systems involved in nonspeech movements. We report data from separate experiments investigating speech auditory-motor learning (N = 60) and limb visuomotor learning (N = 84) in both children and adults who stutter versus matched nonstuttering individuals. Both children and adults who stutter showed statistically significant limitations in speech auditory-motor adaptation with formant-shifted feedback. This limitation was more profound in children than in adults and in younger children versus older children. Between-group differences in the adaptation of reach movements performed with rotated visual feedback were subtle but statistically significant for adults. In children, even the nonstuttering groups showed limited visuomotor adaptation just like their stuttering peers. We conclude that sensorimotor learning is impaired in individuals who stutter, and that the ability for speech auditory-motor learning -- which was already adult-like in 3-6 year-old typically developing children -- is severely compromised in young children near the onset of stuttering. Thus, motor learning limitations may play an important role in the fundamental mechanisms contributing to the onset of this speech disorder.


1969 ◽  
Vol 28 (1) ◽  
pp. 19-22 ◽  
Author(s):  
Darrell Dierks ◽  
Bruce Cushna

The open question of sex differences in the diagnostic use of the Developmental Bender Scoring System for Young Children remains a troubling issue. These differences have been often obscured by the failure to designate clear diagnostic categories or to control for maturational effect. The present study accounts for each of the above variables and their interaction through multivariate design. The presence of a significant sex difference among these 478 children from a clinic population demonstrates the need for further exploration of sex differences in visual motor performance.


2018 ◽  
Author(s):  
Kangwoo Lee ◽  
Youngmin Oh ◽  
Jun Izawa ◽  
Nicolas Schweighofer

AbstractSensory prediction errors are thought to update memories in motor 1 adaptation, but the role of performance errors is largely unknown. To dissociate these errors, we manipulated visual feedback during fast shooting movements under visuomotor rotation. Participants were instructed to strategically correct for performance errors by shooting to a neighboring target in one of four conditions: following the movement onset, the main target, the neighboring target, both targets, or none of the targets disappeared. Participants in all conditions experienced a drift away from the main target following the strategy. In conditions where the main target was shown, participants often tried to minimize performance errors caused by the drift by generating corrective movements. However, despite differences in performance during adaptation between conditions, memory decay in a delayed washout block was indistinguishable between conditions. Our results thus suggest that, in visuomotor adaptation, sensory predictions errors, but not performance errors, update the slow, temporally stable, component of motor memory.


Sign in / Sign up

Export Citation Format

Share Document