scholarly journals Models of utricular bouton afferents: role of afferent-hair cell connectivity in determining spike train regularity

2017 ◽  
Vol 117 (5) ◽  
pp. 1969-1986 ◽  
Author(s):  
William R. Holmes ◽  
Janice A. Huwe ◽  
Barbara Williams ◽  
Michael H. Rowe ◽  
Ellengene H. Peterson

Vestibular bouton afferent terminals in turtle utricle can be categorized into four types depending on their location and terminal arbor structure: lateral extrastriolar (LES), striolar, juxtastriolar, and medial extrastriolar (MES). The terminal arbors of these afferents differ in surface area, total length, collecting area, number of boutons, number of bouton contacts per hair cell, and axon diameter (Huwe JA, Logan CJ, Williams B, Rowe MH, Peterson EH. J Neurophysiol 113: 2420–2433, 2015). To understand how differences in terminal morphology and the resulting hair cell inputs might affect afferent response properties, we modeled representative afferents from each region, using reconstructed bouton afferents. Collecting area and hair cell density were used to estimate hair cell-to-afferent convergence. Nonmorphological features were held constant to isolate effects of afferent structure and connectivity. The models suggest that all four bouton afferent types are electrotonically compact and that excitatory postsynaptic potentials are two to four times larger in MES afferents than in other afferents, making MES afferents more responsive to low input levels. The models also predict that MES and LES terminal structures permit higher spontaneous firing rates than those in striola and juxtastriola. We found that differences in spike train regularity are not a consequence of differences in peripheral terminal structure, per se, but that a higher proportion of multiple contacts between afferents and individual hair cells increases afferent firing irregularity. The prediction that afferents having primarily one bouton contact per hair cell will fire more regularly than afferents making multiple bouton contacts per hair cell has implications for spike train regularity in dimorphic and calyx afferents. NEW & NOTEWORTHY Bouton afferents in different regions of turtle utricle have very different morphologies and afferent-hair cell connectivities. Highly detailed computational modeling provides insights into how morphology impacts excitability and also reveals a new explanation for spike train irregularity based on relative numbers of multiple bouton contacts per hair cell. This mechanism is independent of other proposed mechanisms for spike train irregularity based on ionic conductances and can explain irregularity in dimorphic units and calyx endings.

2020 ◽  
Vol 21 (12) ◽  
pp. 1216-1224
Author(s):  
Fatemeh Forouzanfar ◽  
Samira Asgharzade

Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.


1996 ◽  
Vol 270 (3) ◽  
pp. C819-C824 ◽  
Author(s):  
L. Vaca ◽  
A. Licea ◽  
L. D. Possani

The present study explores the role of different ionic conductances in the regulation of membrane potential under resting conditions and after bradykinin (BK) or thapsigargin (TG) stimulation of cultured bovine aortic endothelial cells. Under resting conditions, the cell membrane potential observed was -62+/- 5 mV. The main conductance under these conditions is an inwardly rectifying potassium (IRK) channel. Application of 50 nM BK induced a transient hyperpolarization to -87 +/- 4 mV followed by sustained depolarization to -35 +/- 5 mV. The transient hyperpolarization was eliminated by 1 microM noxiustoxin, a blocker of calcium-activated postassium channels (K(Ca)). the sustained depolarization induced by BK was prevented by incubating the cells with the calcium channel blocker lanthanum. TG evoked a similar response in membrane potential, with the exception that the onset of the hyperpolarization was slower compared with BK. The results presented here indicate that the cell resting potential is maintained at -62 +/- 2 mV by the IRK channel. BK or TG stimulation induces a transient hyperpolarization of approximately -20 mV produced by activation of a KCa. This hyperpolarization is followed by a sustained depolarization produced by activation of a calcium-selective channel sensitive to lanthanum.


1997 ◽  
Vol 272 (4) ◽  
pp. C1222-C1231
Author(s):  
L. Izu ◽  
M. Li ◽  
R. DeMuro ◽  
M. E. Duffey

We examined the role of G proteins in activation of ionic conductances in isolated T84 cells during cholinergic stimulation. When cells were whole cell voltage clamped to the K+ equilibrium potential (E(K)) or Cl- equilibrium potential (E(Cl)) under standard conditions, the cholinergic agonist, carbachol, induced a large oscillating K+ current but only a small inward current. Addition of the GDP analogue, guanosine 5'-O-(2-thiodiphosphate), to pipettes blocked the ability of carbachol to activate the K+ current. Addition of the nonhydrolyzable GTP analogue, guanosine 5'-O-(3-thiotriphosphate) (GTPgammaS), to pipettes stimulated large oscillating K+ and inward currents. This occurred even when Ca2+ was absent from the bath but not when the Ca2+ chelator, ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, was added to pipettes. When all pipette and bath K+ was replaced with Na+ and cells were voltage clamped between E(Na) and E(Cl), GTPgammaS activated oscillating Na+ and Cl- currents. Finally, addition of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] to pipettes activated large oscillating K+ currents but only small inward currents. These results suggest that a carbachol-induced release of Ca2+ from intracellular stores is activated by a G protein through the phospholipase C-Ins(1,4,5)P3 signaling pathway. In addition, this or another G protein activates Cl- current by directly gating Cl- channels to increase their sensitivity to Ca2+.


1996 ◽  
Vol 8 (6) ◽  
pp. 1245-1265 ◽  
Author(s):  
David P. M. Northmore ◽  
John G. Elias

A dendritic tree, as part of a silicon neuromorph, was modeled in VLSI as a multibranched, passive cable structure with multiple synaptic sites that either depolarize or hyperpolarize local “membrane patches,” thereby raising or lowering the probability of spike generation of an integrate-and-fire “soma.” As expected from previous theoretical analyses, contemporaneous synaptic activation at widely separated sites on the artificial tree resulted in near-linear summation, as did neighboring excitatory and inhibitory activations. Activation of synapses of the same type close in time and space produced local saturation of potential, resulting in spike train processing capabilities not possible with linear summation alone. The resulting sublinear synaptic summation, as well as being physiologically plausible, is sufficient for a variety of spike train processing functions. With the appropriate arrangement of synaptic inputs on its dendritic tree, a neuromorph was shown to discriminate input pulse intervals and patterns, pulse train frequencies, and detect correlation between input trains.


2015 ◽  
Vol 1615 ◽  
pp. 22-30 ◽  
Author(s):  
Xiao-yu Yang ◽  
Kai Jin ◽  
Rui Ma ◽  
Juan-mei Yang ◽  
Wen-wei Luo ◽  
...  

2014 ◽  
Vol 15 (S1) ◽  
Author(s):  
William R Holmes ◽  
Janice A Huwe ◽  
Michael H Rowe ◽  
Ellengene H Peterson
Keyword(s):  

2013 ◽  
Vol 3 (1) ◽  
Author(s):  
Maya Inoue ◽  
Masashi Tanimoto ◽  
Yoichi Oda

Sign in / Sign up

Export Citation Format

Share Document