Stereoscopic Processing of Absolute and Relative Disparity in Human Visual Cortex

2004 ◽  
Vol 92 (3) ◽  
pp. 1880-1891 ◽  
Author(s):  
Peter Neri ◽  
Holly Bridge ◽  
David J. Heeger

Stereoscopic vision relies mainly on relative depth differences between objects rather than on their absolute distance in depth from where the eyes fixate. However, relative disparities are computed from absolute disparities, and it is not known where these two stages are represented in the human brain. Using functional MRI (fMRI), we assessed absolute and relative disparity selectivity with stereoscopic stimuli consisting of pairs of transparent planes in depth in which the absolute and relative disparity signals could be independently manipulated (at a local spatial scale). In experiment 1, relative disparity was kept constant, while absolute disparity was varied in one-half the blocks of trials (“mixed” blocks) and kept constant in the remaining one-half (“same” blocks), alternating between blocks. Because neuronal responses undergo adaptation and reduce their firing rate following repeated presentation of an effective stimulus, the fMRI signal reflecting activity of units selective for absolute disparity is expected to be smaller during “same” blocks as compared with “mixed” ones. Experiment 2 similarly manipulated relative disparity rather than absolute disparity. The results from both experiments were consistent with adaptation with differential effects across visual areas such that 1) dorsal areas (V3A, MT+/V5, V7) showed more adaptation to absolute than to relative disparity; 2) ventral areas (hV4, V8/V4α) showed an equal adaptation to both; and 3) early visual areas (V1, V2, V3) showed a small effect in both experiments. These results indicate that processing in dorsal areas may rely mostly on information about absolute disparities, while ventral areas split neural resources between the two types of stereoscopic information so as to maintain an important representation of relative disparity.

2018 ◽  
Author(s):  
Lisa Kirchberger ◽  
Sreedeep Mukherjee ◽  
Ulf H. Schnabel ◽  
Enny H. van Beest ◽  
Areg Barsegyan ◽  
...  

AbstractThe segregation of figures from the background is an important step in visual perception. In primary visual cortex, figures evoke stronger activity than backgrounds during a delayed phase of the neuronal responses, but it is unknown how this figure-ground modulation (FGM) arises and whether it is necessary for perception. Here we show, using optogenetic silencing in mice, that the delayed V1 response phase is necessary for figure-ground segregation. Neurons in higher visual areas also exhibit FGM and optogenetic silencing of higher areas reduced FGM in V1. In V1, figures elicited higher activity of vasoactive intestinal peptide-expressing (VIP) interneurons than the background, whereas figures suppressed somatostatin-positive interneurons, resulting in an increased activation of pyramidal cells. Optogenetic silencing of VIP neurons reduced FGM in V1, indicating that disinhibitory circuits contribute to FGM. Our results provide new insight in how lower and higher areas of the visual cortex interact to shape visual perception.


Author(s):  
Andrew J. Parker

Humans and some animals can use their two eyes in cooperation to detect and discriminate parts of the visual scene based on depth. Owing to the horizontal separation of the eyes, each eye obtains a slightly different view of the scene in front of the head. These small differences are processed by the nervous system to generate a sense of binocular depth. As humans, we experience an impression of solidity that is fully three-dimensional; this impression is called stereopsis and is what we appreciate when we watch a 3D movie or look into a stereoscopic viewer. While the basic perceptual phenomena of stereoscopic vision have been known for some time, it is mainly within the last 50 years that we have gained an understanding of how the nervous system delivers this sense of depth. This period of research began with the identification of neuronal signals for binocular depth in the primary visual cortex. Building on that finding, subsequent work has traced the signaling pathways for binocular stereoscopic depth forward into extrastriate cortex and further on into cortical areas concerning with sensorimotor integration. Within these pathways, neurons acquire sensitivity to more complex, higher order aspects of stereoscopic depth. Signals relating to the relative depth of visual features can be identified in the extrastriate cortex, which is a form of selectivity not found in the primary visual cortex. Over the same time period, knowledge of the organization of binocular vision in animals that inhabit a wide diversity of ecological niches has substantially increased. The implications of these findings for developmental and adult plasticity of the visual nervous system and onset of the clinical condition of amblyopia are explored in this article. Amblyopic vision is associated with a cluster of different visual and oculomotor symptoms, but the loss of high-quality stereoscopic depth performance is one of the consistent clinical features. Understanding where and how those losses occur in the visual brain is an important goal of current research, for both scientific and clinical reasons.


2020 ◽  
Author(s):  
Mahdi Ramadan ◽  
Eric Kenji Lee ◽  
Shiella Caldejon ◽  
India Kato ◽  
Kate Roll ◽  
...  

AbstractMultiple recent studies have shown that motor activity greatly impacts the activity of primary sensory areas like V1. Yet, the role of this motor related activity in sensory processing is still unclear. Here we further dissect how these behavior relevant signals are broadcast to different layers and areas of visual cortex. To do so, we leveraged a standardized motor behavior fidget event in behavioral videos of passively viewing mice. A large two-photon Ca2+ imaging database of neuronal responses uncovered four neural response types during fidgets that are surprisingly consistent in their proportion and response patterns across all visual areas and layers of the visual cortex. Indeed, the layer and area identity could not be decoded above chance level based only on neuronal recordings. The broad availability of standardized behavior signals could be a key component in how the cortex selects, learns and binds local sensory information with relevant motor outputs.


2021 ◽  
Vol 7 (27) ◽  
pp. eabe1833
Author(s):  
Lisa Kirchberger ◽  
Sreedeep Mukherjee ◽  
Ulf H. Schnabel ◽  
Enny H. van Beest ◽  
Areg Barsegyan ◽  
...  

The segregation of figures from the background is an important step in visual perception. In primary visual cortex, figures evoke stronger activity than backgrounds during a delayed phase of the neuronal responses, but it is unknown how this figure-ground modulation (FGM) arises and whether it is necessary for perception. Here, we show, using optogenetic silencing in mice, that the delayed V1 response phase is necessary for figure-ground segregation. Neurons in higher visual areas also exhibit FGM and optogenetic silencing of higher areas reduced FGM in V1. In V1, figures elicited higher activity of vasoactive intestinal peptide–expressing (VIP) interneurons than the background, whereas figures suppressed somatostatin-positive interneurons, resulting in an increased activation of pyramidal cells. Optogenetic silencing of VIP neurons reduced FGM in V1, indicating that disinhibitory circuits contribute to FGM. Our results provide insight into how lower and higher areas of the visual cortex interact to shape visual perception.


2018 ◽  
Vol 35 ◽  
Author(s):  
JAMES E. NIEMEYER ◽  
MICHAEL A. PARADISO

AbstractNeurons in visual areas of the brain are generally characterized by the increase in firing rate that occurs when a stimulus is flashed on in the receptive field (RF). However, neurons also increase their firing rate when a stimulus is turned off. These “termination responses” or “after-discharges” that occur with flashed stimuli have been observed in area V1 and they may be important for vision as stimulus terminations have been shown to influence visual perception. The goal of the present study was to determine the strength of termination responses in the more natural situation in which eye movements move a stimulus out of an RF. We find that termination responses do occur in macaque V1 when termination results from a saccadic eye movement, but they are smaller in amplitude compared to flashed-off stimuli. Furthermore, there are termination responses even in the absence of visual stimulation. These findings demonstrate that termination responses are a component of naturalistic vision. They appear to be based on both visual and nonvisual signals in visual cortex. We speculate that the weakening of termination responses might be a neural correlate of saccadic suppression, the loss of perceptual sensitivity around the time of saccades.


2016 ◽  
Vol 116 (5) ◽  
pp. 2331-2341 ◽  
Author(s):  
Dasuni S. Alwis ◽  
Katrina L. Richards ◽  
Nicholas S. C. Price

In visual masking the perception of a target stimulus is impaired by a preceding (forward) or succeeding (backward) mask stimulus. The illusion is of interest because it allows uncoupling of the physical stimulus, its neuronal representation, and its perception. To understand the neuronal correlates of masking, we examined how masks affected the neuronal responses to oriented target stimuli in the primary visual cortex (V1) of anesthetized rats ( n = 37). Target stimuli were circular gratings with 12 orientations; mask stimuli were plaids created as a binarized sum of all possible target orientations. Spatially, masks were presented either overlapping or surrounding the target. Temporally, targets and masks were presented for 33 ms, but the stimulus onset asynchrony (SOA) of their relative appearance was varied. For the first time, we examine how spatially overlapping and center-surround masking affect orientation discriminability (rather than visibility) in V1. Regardless of the spatial or temporal arrangement of stimuli, the greatest reductions in firing rate and orientation selectivity occurred for the shortest SOAs. Interestingly, analyses conducted separately for transient and sustained target response components showed that changes in orientation selectivity do not always coincide with changes in firing rate. Given the near-instantaneous reductions observed in orientation selectivity even when target and mask do not spatially overlap, we suggest that monotonic visual masking is explained by a combination of neural integration and lateral inhibition.


2021 ◽  
Vol 17 (2) ◽  
pp. e1008548
Author(s):  
Mari Ganesh Kumar ◽  
Ming Hu ◽  
Aadhirai Ramanujan ◽  
Mriganka Sur ◽  
Hema A. Murthy

The visual cortex of the mouse brain can be divided into ten or more areas that each contain complete or partial retinotopic maps of the contralateral visual field. It is generally assumed that these areas represent discrete processing regions. In contrast to the conventional input-output characterizations of neuronal responses to standard visual stimuli, here we asked whether six of the core visual areas have responses that are functionally distinct from each other for a given visual stimulus set, by applying machine learning techniques to distinguish the areas based on their activity patterns. Visual areas defined by retinotopic mapping were examined using supervised classifiers applied to responses elicited by a range of stimuli. Using two distinct datasets obtained using wide-field and two-photon imaging, we show that the area labels predicted by the classifiers were highly consistent with the labels obtained using retinotopy. Furthermore, the classifiers were able to model the boundaries of visual areas using resting state cortical responses obtained without any overt stimulus, in both datasets. With the wide-field dataset, clustering neuronal responses using a constrained semi-supervised classifier showed graceful degradation of accuracy. The results suggest that responses from visual cortical areas can be classified effectively using data-driven models. These responses likely reflect unique circuits within each area that give rise to activity with stronger intra-areal than inter-areal correlations, and their responses to controlled visual stimuli across trials drive higher areal classification accuracy than resting state responses.


Author(s):  
Xiaolian Li ◽  
Qi Zhu ◽  
Wim Vanduffel

AbstractThe visuotopic organization of dorsal visual cortex rostral to area V2 in primates has been a longstanding source of controversy. Using sub-millimeter phase-encoded retinotopic fMRI mapping, we recently provided evidence for a surprisingly similar visuotopic organization in dorsal visual cortex of macaques compared to previously published maps in New world monkeys (Zhu and Vanduffel, Proc Natl Acad Sci USA 116:2306–2311, 2019). Although individual quadrant representations could be robustly delineated in that study, their grouping into hemifield representations remains a major challenge. Here, we combined in-vivo high-resolution myelin density mapping based on MR imaging (400 µm isotropic resolution) with fine-grained retinotopic fMRI to quantitatively compare myelin densities across retinotopically defined visual areas in macaques. Complementing previously documented differences in populational receptive-field (pRF) size and visual field signs, myelin densities of both quadrants of the dorsolateral posterior area (DLP) and area V3A are significantly different compared to dorsal and ventral area V3. Moreover, no differences in myelin density were observed between the two matching quadrants belonging to areas DLP, V3A, V1, V2 and V4, respectively. This was not the case, however, for the dorsal and ventral quadrants of area V3, which showed significant differences in MR-defined myelin densities, corroborating evidence of previous myelin staining studies. Interestingly, the pRF sizes and visual field signs of both quadrant representations in V3 are not different. Although myelin density correlates with curvature and anticorrelates with cortical thickness when measured across the entire cortex, exactly as in humans, the myelin density results in the visual areas cannot be explained by variability in cortical thickness and curvature between these areas. The present myelin density results largely support our previous model to group the two quadrants of DLP and V3A, rather than grouping DLP- with V3v into a single area VLP, or V3d with V3A+ into DM.


Sign in / Sign up

Export Citation Format

Share Document