scholarly journals Organization of response areas in ferret primary auditory cortex

1993 ◽  
Vol 69 (2) ◽  
pp. 367-383 ◽  
Author(s):  
S. A. Shamma ◽  
J. W. Fleshman ◽  
P. R. Wiser ◽  
H. Versnel

1. We studied the topographic organization of the response areas obtained from single- and multiunit recordings along the isofrequency planes of the primary auditory cortex in the barbiturate-anesthetized ferret. 2. Using a two-tone stimulus, we determined the excitatory and inhibitory portions of the response areas and then parameterized them in terms of an asymmetry index. The index measures the balance of excitatory and inhibitory influences around the best frequency (BF). 3. The sensitivity of responses to the direction of a frequency-modulated (FM) tone was tested and found to correlate strongly with the asymmetry index of the response areas. Specifically, cells with strong inhibition from frequencies above the BF preferred upward sweeps, and those from frequencies below the BF preferred downward sweeps. 4. Responses to spectrally shaped noise were also consistent with the asymmetry of the response areas. For instance, cells that were strongly inhibited by frequencies higher than the BF responded best to stimuli that contained least spectral energy above the BF, i.e., stimuli with the opposite asymmetry. 5. Columnar organization of the response area types was demonstrated in 66 single units from 16 penetrations. Consistent with this finding, it was also shown that response area asymmetry measured from recordings of a cluster of cells corresponded closely with those measured from its single-unit constituents. Thus, in a local region, most cells exhibited similar response area types and other response features, e.g., FM directional sensitivity. 6. The distribution of the asymmetry index values along the isofrequency planes revealed systematic changes in the symmetry of the response areas. At the center, response areas with narrow and symmetric inhibitory sidebands predominated. These gave way to asymmetric inhibition, with high-frequency inhibition (relative to the BF) becoming more effective caudally and low-frequency inhibition more effective rostrally. These response types tended to cluster along repeated bands that paralleled the tonotopic axis. 7. Response features that correlated with the response area types were also mapped along the isofrequency planes. Thus, in four animals, a map of FM directional sensitivity was shown to be superimposed on the response area map. Similarly, it was demonstrated in six animals that the spectral gradient of the most effective noise stimulus varied systematically along the isofrequency planes. 8. One functional implication of the response area organization is that cortical responses encode the locally averaged gradient of the acoustic spectrum by their differential distribution along the isofrequency planes. This enhances the representation of such features as the symmetry of spectral peaks and edges and the spectral envelope.(ABSTRACT TRUNCATED AT 400 WORDS)

2013 ◽  
Vol 25 (2) ◽  
pp. 175-187 ◽  
Author(s):  
Jihoon Oh ◽  
Jae Hyung Kwon ◽  
Po Song Yang ◽  
Jaeseung Jeong

Neural responses in early sensory areas are influenced by top–down processing. In the visual system, early visual areas have been shown to actively participate in top–down processing based on their topographical properties. Although it has been suggested that the auditory cortex is involved in top–down control, functional evidence of topographic modulation is still lacking. Here, we show that mental auditory imagery for familiar melodies induces significant activation in the frequency-responsive areas of the primary auditory cortex (PAC). This activation is related to the characteristics of the imagery: when subjects were asked to imagine high-frequency melodies, we observed increased activation in the high- versus low-frequency response area; when the subjects were asked to imagine low-frequency melodies, the opposite was observed. Furthermore, we found that A1 is more closely related to the observed frequency-related modulation than R in tonotopic subfields of the PAC. Our findings suggest that top–down processing in the auditory cortex relies on a mechanism similar to that used in the perception of external auditory stimuli, which is comparable to early visual systems.


2005 ◽  
Vol 94 (4) ◽  
pp. 2263-2274 ◽  
Author(s):  
Jiping Zhang ◽  
Kyle T. Nakamoto ◽  
Leonard M. Kitzes

Sounds commonly occur in sequences, such as in speech. It is therefore important to understand how the occurrence of one sound affects the response to a subsequent sound. We approached this question by determining how a conditioning stimulus alters the response areas of single neurons in the primary auditory cortex (AI) of barbiturate-anesthetized cats. The response areas consisted of responses to stimuli that varied in level at the two ears and delivered at the characteristic frequency of each cell. A binaural conditioning stimulus was then presented ≥50 ms before each of the stimuli comprising the level response area. An effective preceding stimulus alters the shape and severely reduces the size and response magnitude of the level response area. This ability of the preceding stimulus depends on its proximity in the level domain to the level response area, not on its absolute level or on the size of the response it evokes. Preceding stimuli evoke a nonlinear inhibition across the level response area that results in an increased selectivity of a cortical neuron for its preferred binaural stimuli. The selectivity of AI neurons during the processing of a stream of acoustic stimuli is likely to be restricted to a portion of their level response areas apparent in the tone-alone condition. Thus rather than being static, level response areas are fluid; they can vary greatly in extent, shape and response magnitude. The dynamic modulation of the level response area and level selectivity of AI neurons might be related to several tasks confronting the central auditory system.


2006 ◽  
Vol 95 (3) ◽  
pp. 1897-1907 ◽  
Author(s):  
Kyle T. Nakamoto ◽  
Jiping Zhang ◽  
Leonard M. Kitzes

Auditory stimuli occur most often in sequences rather than in isolation. It is therefore necessary to understand how responses to sounds occurring in sequences differ from responses to isolated sounds. Cells in primary auditory cortex (AI) respond to a large set of binaural stimuli when presented in isolation. The set of responses to such stimuli presented at one frequency comprises a level response area. A preceding binaural stimulus can reduce the size and magnitude of level response areas of AI cells. The present study focuses on the effects of the time interval between a preceding stimulus and the stimuli of a level response area in pentobarbital-anesthetized cats. After the offset of a preceding stimulus, the ability of AI cells to respond to succeeding stimuli varies dynamically in time. At short interstimulus intervals (ISI), a preceding stimulus can completely inhibit responses to succeeding stimuli. With increasing ISIs, AI cells respond first to binaural stimuli that evoke the largest responses in the control condition, i.e., not preceded by a stimulus. Recovery rate is nonlinear across the level response area; responses to these most-effective stimuli recover to 70% of control on average 187 ms before responses to other stimuli recover to 70% of their control sizes. During the tens to hundreds of milliseconds that a level response area is reduced in size and magnitude, the selectivity of AI cells is increased for stimuli that evoke the largest responses. This increased selectivity results from a temporal nonlinearity in the recovery of the level response area which protects responses to the most effective binaural stimuli. Thus in a sequence of effective stimuli, a given cell will respond selectively to only those stimuli that evoke a strong response when presented alone.


1998 ◽  
Vol 79 (6) ◽  
pp. 3041-3059 ◽  
Author(s):  
Peter Heil ◽  
Dexter R. F. Irvine

Heil, Peter and Dexter R. F. Irvine. Functional specialization in auditory cortex: responses to frequency-modulated stimuli in the cat's posterior auditory field. J. Neurophysiol. 79: 3041–3059, 1998. The mammalian auditory cortex contains multiple fields but their functional role is poorly understood. Here we examine the responses of single neurons in the posterior auditory field (P) of barbiturate- and ketamine-anesthetized cats to frequency-modulated (FM) sweeps. FM sweeps traversed the excitatory response area of the neuron under study, and FM direction and the linear rate of change of frequency (RCF) were varied systematically. In some neurons, sweeps of different sound pressure levels (SPLs) also were tested. The response magnitude (number of spikes corrected for spontaneous activity) of nearly all field P neurons varied with RCF. RCF response functions displayed a variety of shapes, but most functions were of low-pass characteristic or peaked at rather low RCFs (<100 kHz/s). Neurons with strong responses to high RCFs (high-pass or nonselective RCF response function characteristics) all displayed spike count—SPL functions to tone burst onsets that were monotonic or weakly nonmonotonic. RCF response functions and best RCFs often changed with SPL. For most neurons, FM directional sensitivity, quantified by a directional sensitivity (DS) index, also varied with RCF and SPL, but the mean and width of the distribution of DS indices across all neurons was independent of RCF. Analysis of response timing revealed that the phasic response of a neuron is triggered when the instantaneous frequency of the sweep reaches a particular value, the effective F i. For a given neuron, values of effective F i were independent of RCF, but depended on FM direction and SPL and were associated closely with the boundaries of the neuron's frequency versus amplitude response area. The standard deviation (SD) of the latency of the first spike of the response decreased with RCF. When SD was expressed relative to the rate of change of stimulus frequency, the resulting index of frequency jitter increased with RCF and did so rather uniformly in all neurons and largely independent of SPL. These properties suggest that many FM parameters are represented by, and may be encoded in, orderly temporal patterns across different neurons in addition to the strength of responses. When compared with neurons in primary and anterior auditory fields, field P neurons respond better to relatively slow FMs. Together with previous studies of responses to modulations of amplitude, such as tone onsets, our findings suggest more generally that field P may be best suited for processing signals that vary relatively slowly over time.


2003 ◽  
Vol 46 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Ling Qin ◽  
Toshihiro Kitama ◽  
Sohei Chimoto ◽  
Shuichi Sakayori ◽  
Yu Sato

1995 ◽  
Vol 73 (4) ◽  
pp. 1513-1523 ◽  
Author(s):  
N. Kowalski ◽  
H. Versnel ◽  
S. A. Shamma

1. Characteristics of an anterior auditory field (AAF) in the ferret auditory cortex are described in terms of its electrophysiological responses to tonal stimuli and compared with those of primary auditory cortex (AI). Ferrets were barbiturate-anesthetized and tungsten microelectrodes were used to record single-unit responses from both AI and AAF fields. Units in both areas were presented with the same stimulus paradigms and their responses analyzed in the same manner so that a direct comparison of responses was possible. 2. The AAF is located dorsal and rostral to AI on the ectosylvian gyrus and extends into the suprasylvian sulcus rostral to AI. The tonotopicity is organized with high frequencies at the top of the sulcus bordering the high-frequency area of AI, then reversing with lower BFs extending down into the sulcus. AAF contained single units that responded to a frequency range of 0.3-30 kHz. 3. Stimuli consisted of single-tone bursts, two-tone bursts and frequency-modulated (FM) stimuli swept in both directions at various rates. Best frequency (BF) range, rate-level functions at BF, FM directional sensitivity, and variation in asymmetries of response areas were all comparable characteristics between AAF and AI. Responses in both areas were primarily phasic. 4. The characteristics that were different between the two cortical areas were: latency to tone onset, excitatory bandwidth 20 dB above threshold (BW20), and preferred FM rate as parameterized with the centroid (a weighted average of spike counts). The mean latency of AAF units was shorter than in AI (AAF: 16.8 ms, AI: 19.4 ms). BW20 measurements in AAF were typically twice as large as those found in AI (AAF: 2.5 octaves, AI 1.3 octaves). The AI centroid population had a significantly larger standard deviation than the AAF centroid population. 5. We examined the relationship between centroid and BW20 to see whether wider bandwidths were a factor in a unit's ability to detect fast sweeps. There was significant (P < 0.05) linear correlation in AAF but not in AI. In both fields the variance of the centroid population decreased with increasing BW20. BW20 decreased as BF increased for units in both auditory fields.


2009 ◽  
Vol 102 (3) ◽  
pp. 1366-1378 ◽  
Author(s):  
Khaleel A. Razak ◽  
Zoltan M. Fuzessery

In the pallid bat auditory cortex and inferior colliculus (IC), the majority of neurons tuned in the echolocation range is selective for the direction and rate of frequency-modulated (FM) sweeps used in echolocation. Such selectivity is shaped mainly by spectrotemporal asymmetries in sideband inhibition. An early-arriving, low-frequency inhibition (LFI) shapes direction selectivity. A delayed, high-frequency inhibition (HFI) shapes rate selectivity for downward sweeps. Using iontophoretic blockade of GABAa receptors, we show that cortical FM sweep selectivity is at least partially shaped locally. GABAa receptor antagonists, bicuculline or gabazine, reduced or eliminated direction and rate selectivity in ∼50% of neurons. Intracortical GABA shapes FM sweep selectivity by either creating the underlying sideband inhibition or by advancing the arrival time of inhibition relative to excitation. Given that FM sweep selectivity and asymmetries in sideband inhibition are already present in the IC, these data suggest a refinement or recreation of similar response properties at the cortical level.


1991 ◽  
Vol 65 (5) ◽  
pp. 1207-1226 ◽  
Author(s):  
M. L. Sutter ◽  
C. E. Schreiner

1. The physiology and topography of single neuron responses along the isofrequency domain of the middle- and high-frequency portions [characteristic frequencies (CFs) greater than 4 kHz] of the primary auditory cortex (AI) were investigated in the barbiturate-anesthetized cat. Single neurons were recorded at several locations along the extent of isofrequency contours, defined from initial multiple-unit mapping. For each neuron a high-resolution excitatory tuning curve was determined, and for some neurons high-resolution two-tone tuning curves were recorded to measure inhibitory/suppressive areas. 2. A physiologically distinct population of neurons was found in the dorsal part of cat AI. These neurons exhibited two or three distinct excitatory frequency ranges, whereas most neurons in AI responded with excitation to a single narrow frequency range. These were called multipeaked neurons because of the shape of their tuning curves. At frequencies between the excitatory regions, the multipeaked neurons were inhibited or unresponsive. 3. Multipeaked neurons exhibited several distinct threshold minima in their frequency tuning curves. Most of the multipeaked neurons (88%) displayed two frequency minima, whereas the rest exhibited three minima. 4. The frequency separation between threshold minima was less than 1 octave in 71% of the double-peaked neurons recorded. Occasionally, the frequency peaks of these neurons closely corresponded to a response to second and third harmonics without a response to the fundamental frequency. 5. Multipeaked neurons exhibited a wide range of total bandwidths (highest excitatory frequency minus lowest excitatory frequency expressed in octaves). Bandwidths of the isolated peaks within the same neuron were also quite variable. 6. Response latencies to tones with frequencies within each peak of a multipeaked neuron could vary considerably. In 71% (17) of the neurons, tones corresponding to the high-frequency peak (CFh) elicited a longer response latency (greater than 4 ms) than those corresponding to the low-frequency peak (CF1). 7. Inhibitory/suppressive bands, as demonstrated with a two-tone paradigm, were often present between the peaks. Typically, neurons with excitatory peaks of similar response latencies showed an inhibitory band located between the peaks. 8. Ninety percent of the topographically localized multipeaked neurons were in the dorsal part of AI (greater than 1 mm dorsal to the maximum in the sharpness-of-tuning map). Although these neurons were restricted to dorsal AI, only 35% of neurons in this region were multipeaked. 9. Multipeaked neurons could show decreased response latencies and thresholds to two-tone combinations.(ABSTRACT TRUNCATED AT 400 WORDS)


2015 ◽  
Vol 113 (7) ◽  
pp. 2900-2920 ◽  
Author(s):  
Hiroaki Tsukano ◽  
Masao Horie ◽  
Takeshi Bo ◽  
Arikuni Uchimura ◽  
Ryuichi Hishida ◽  
...  

The primary auditory cortex (AI) is the representative recipient of information from the ears in the mammalian cortex. However, the delineation of the AI is still controversial in a mouse. Recently, it was reported, using optical imaging, that two distinct areas of the AI, located ventrally and dorsally, are activated by high-frequency tones, whereas only one area is activated by low-frequency tones. Here, we show that the dorsal high-frequency area is an independent region that is separated from the rest of the AI. We could visualize the two distinct high-frequency areas using flavoprotein fluorescence imaging, as reported previously. SMI-32 immunolabeling revealed that the dorsal region had a different cytoarchitectural pattern from the rest of the AI. Specifically, the ratio of SMI-32-positive pyramidal neurons to nonpyramidal neurons was larger in the dorsal high-frequency area than the rest of the AI. We named this new region the dorsomedial field (DM). Retrograde tracing showed that neurons projecting to the DM were localized in the rostral part of the ventral division of the medial geniculate body with a distinct frequency organization, where few neurons projected to the AI. Furthermore, the responses of the DM to ultrasonic courtship songs presented by males were significantly greater in females than in males; in contrast, there was no sex difference in response to artificial pure tones. Our findings offer a basic outline on the processing of ultrasonic vocal information on the basis of the precisely subdivided, multiple frequency-organized auditory cortex map in mice.


Sign in / Sign up

Export Citation Format

Share Document