Differential effects of muscimol microinjection into dorsal and ventral aspects of the premotor cortex of monkeys

1994 ◽  
Vol 71 (3) ◽  
pp. 1151-1164 ◽  
Author(s):  
K. Kurata ◽  
D. S. Hoffman

1. A gamma aminobutyric acid (GABAA) receptor agonist, muscimol (Sigma, 5 micrograms/microliters solution), and a GABAB receptor agonist and antagonist, baclofen and phaclofen, respectively, were injected (1.0 microliter) into the dorsal and ventral aspects of the premotor cortex (PM) of two Japanese monkeys (Macaca fuscata), while they were performing a motor task that required wrist flexion or extension to a target. The correct movement was instructed by either 1) a conditional color cue [green or red light emitting diodes (LED)] equidistant from the targets or 2) a directional cue toward extension or flexion (right or left LED). When the green or right LED was illuminated, extension was to be performed. When the red or left LED was illuminated, flexion was required. The movement was triggered by a visual stimulus either simultaneously with the instruction stimulus or after a variable delay. 2. Before drug injection, single-unit recordings were made to select injection sites 1) in the dorsal aspect of the PM (PMd) around the superior precentral sulcus where typical set-related activity was frequently recorded and 2) in the ventral aspect of the PM (PMv) immediately caudal to the genu of the arcuate sulcus where movement-related neurons were densely located. 3. Behavioral deficits were observed primarily at the time muscimol, but not baclofen or phaclofen, was injected. Furthermore, muscimol effects were short-lasting: deficits were most frequently observed during the 10-min injection period but seldom after completion of injection. 4. When muscimol was injected into the PMd, there was an increase in the number of direction errors primarily when the conditional cues were presented. The initiated movements were similar in amplitude and velocity to the preinjection behavior. In contrast, when muscimol was injected into the PMv, many of the initiated movements showed smaller amplitudes and slower velocities, but few direction errors were made. 5. These results suggest that the PMd and PMv play differential roles in motor control: the PMd is more important than PMv in conditional motor behavior and plays a role in the preparation for forthcoming movements. In contrast, the PMv is more specialized for a role in the execution of visually guided movements.

2013 ◽  
Vol 110 (4) ◽  
pp. 952-963 ◽  
Author(s):  
Patricia F. Sayegh ◽  
Kara M. Hawkins ◽  
Kari L. Hoffman ◽  
Lauren E. Sergio

The aim of this research was to understand how the brain controls voluntary movement when not directly interacting with the object of interest. In the present study, we examined the role of premotor cortex in this behavior. The goal of this study was to characterize the oscillatory activity within the caudal and rostral subdivisions of dorsal premotor cortex (PMdc and PMdr) with a change from the most basic reaching movement to one that involves a simple dissociation between the actions of the eyes and hand. We were specifically interested in how PMdr and PMdc respond when the eyes and hand are decoupled by moving along different spatial planes. We recorded single-unit activity and local field potentials within PMdr and PMdc from two rhesus macaques during performance of two types of visually guided reaches. During the standard condition, a visually guided reach was performed whereby the visual stimulus guiding the movement was the target of the reach itself. During the nonstandard condition, the visual stimulus provided information about the direction of the required movement but was not the target of the motor output. We observed distinct task-related and topographical differences between PMdr and PMdc. Our results support functional differences between PMdr and PMdc during visually guided reaching. PMdr activity appears more involved in integrating the rule-based aspects of a visually guided reach, whereas PMdc is more involved in the online updating of the decoupled reach. More broadly, our results highlight the necessity of accounting for the nonstandard nature of a motor task when interpreting movement control research data.


1993 ◽  
Vol 265 (2) ◽  
pp. R348-R355 ◽  
Author(s):  
V. L. Trudeau ◽  
B. D. Sloley ◽  
R. E. Peter

The involvement of gamma-aminobutyric acid (GABA) in regulation of pituitary gonadotropin-II (GTH-II) release was studied in the goldfish. Intraperitoneal injection of GABA (300 micrograms/g) stimulated an increase in serum GTH-II levels at 30 min postinjection. The GABAA receptor agonist muscimol (0.1-10 micrograms/g) stimulated GTH-II in a dose-dependent manner. Baclofen, a GABAB receptor agonist, had a small but significant stimulatory effect at 1 and 10 micrograms/g; the amount of GTH-II released in response to baclofen was significantly less (P < 0.05) than that released by muscimol. Pretreatment of goldfish with bicuculline, a GABAA receptor antagonist, but not saclofen, a GABAB receptor antagonist, blocked the stimulatory effect of GABA on serum GTH-II. Elevation of brain and pituitary GABA levels with the GABA transaminase inhibitor, gamma-vinyl-GABA (GVG), decreased hypothalamic and pituitary dopamine (DA) turnover rates, indicating that GABA may stimulate GTH-II release in the goldfish by decreasing dopaminergic inhibition of GTH-II release. The release of GTH-II stimulated by muscimol and GVG was potentiated by pharmacological agents that decrease inhibitory dopaminergic tone, indicating that DA may also inhibit GABA-stimulated GTH-II release. Based on the linear 24-h accumulation of GABA in brain and pituitary after GVG injection, implantation of testosterone, estradiol, or progesterone, previously shown to regulate the serum GTH-II release response to gonadotropin-releasing hormone and GABA, was also found to modulate GABA synthesis in the brain and pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)


1996 ◽  
Vol 75 (5) ◽  
pp. 2017-2028 ◽  
Author(s):  
M. Capogna ◽  
B. H. Gahwiler ◽  
S. M. Thompson

1. Presynaptic inhibition of synaptic transmission in the hippocampus was investigated by comparing the effects of several agonists on miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs). 2. The Ca2+ ionophore ionomycin increased the frequency of mEPSCs and mIPSCs but did not affect their amplitude. Ionomycin-induced release required extracellular Ca2+ and was prevented by pretreatment with botulinum neurotoxin serotype F, like evoked synaptic transmission. Unlike evoked transmission, however, this increase did not involve activation of voltage-dependent Ca2+ channels because it was insensitive to Cd2+. 3. Both the lanthanide gadolinium and alpha-latrotoxin produced increases in the frequency of mEPSCs and mIPSCs, but their actions were independent of extracellular Ca2+. 4. Adenosine, the gamma-aminobutyric acid-B (GABAB) receptor agonist baclofen, and a mu-opioid receptor agonist strongly reduced the frequency of synaptic currents triggered by all three secretagogues. 5. We conclude that activation of these presynaptic receptors can reduce high frequencies of vesicular glutamate and GABA release by directly impairing transmitter exocytosis. Presynaptic inhibition of gadolinium- and alpha-latrotoxin-induced release indicates that this impairment occurs without changes in intraterminal Ca2+ homeostasis and when vesicle fusion is rendered Ca2+ independent, respectively. 6. The inhibition of ionomycin-induced release provides additional evidence for a direct, neurotransmitter receptor-mediated modulation of the proteins underlying vesicular docking or fusion as an important component of presynaptic inhibition of evoked synaptic transmission.


1991 ◽  
Vol 66 (3) ◽  
pp. 705-718 ◽  
Author(s):  
H. Mushiake ◽  
M. Inase ◽  
J. Tanji

1. Single-cell activity was recorded from three different motor areas in the cerebral cortex: the primary motor cortex (MI), supplementary motor area (SMA), and premotor cortex (PM). 2. Three monkeys (Macaca fuscata) were trained to perform a sequential motor task in two different conditions. In one condition (visually triggered task, VT), they reached to and touched three pads placed in a front panel by following lights illuminated individually from behind the pads. In the other condition (internally guided task, IT), they had to remember a predetermined sequence and press the three pads without visual guidance. In a transitional phase between the two conditions, the animals learned to memorize the correct sequence. Auditory instruction signals (tones of different frequencies) told the animal which mode it was in. After the instruction signals, the animals waited for a visual signal that triggered the first movement. 3. Neuronal activity was analyzed during three defined periods: delay period, premovement period, and movement period. Statistical comparisons were made to detect differences between the two behavioral modes with respect to the activity in each period. 4. Most, if not all, of MI neurons exhibited similar activity during the delay, premovement, and movement periods, regardless of whether the sequential motor task was visually guided or internally determined. 5. More than one-half of the SMA neurons were preferentially or exclusively active in relation to IT during both the premovement (55%) and movement (65%) periods. In contrast, PM neurons were more active (55% and 64% during the premovement and movement periods) in VT. 6. During the instructed-delay period, a majority of SMA neurons exhibited preferential or exclusive relation to IT whereas the activity in PM neurons was observed equally in different modes. 7. Two types of neurons exhibiting properties of special interest were observed. Sequence-specific neurons (active in a particular sequence only) were more common in SMA, whereas transition-specific neurons (active only at the transitional phase) were more common in PM. 8. Although a strict functional dichotomy is not acceptable, these observations support a hypothesis that the SMA is more related to IT, whereas PM is more involved in VT. 9. Some indications pointing to a functional subdivision of PM are obtained.


1995 ◽  
Vol 268 (2) ◽  
pp. R428-R437 ◽  
Author(s):  
Y. W. Li ◽  
P. G. Guyenet

We recorded the effects of the gamma-aminobutyric acid class B (GABAB) receptor agonist baclofen on neuronal activity in the rat rostral ventrolateral medulla (RVLM) in tissue slices and in vivo. In vitro, baclofen (3 microM) produced hyperpolarization (13 of 17), decrease in input resistance (12 of 16), and reduction of spontaneous synaptic activity (7 of 14). Baclofen inhibited 84 of 87 spontaneously active neurons recorded extracellularly in vitro. Inhibition was concentration dependent (0.1-3 microM, maximum inhibition: 94 +/- 4%, n = 16) and persisted in low-Ca2+/high-Mg2+ medium (n = 19). The GABAB receptor antagonists CGP-54626A (1 microM, n = 19), CGP-55845A (1 microM, n = 15), and 2-hydroxysaclofen (0.5 mM, n = 3) attenuated inhibition by baclofen (1-3 microM) but not by muscimol or GABA. In vivo, iontophoresis of baclofen inhibited 31 of 32 RVLM neurons, including bulbospinal barosensitive (15 of 16) and respiratory ones (7 of 7). CGP-55845A attenuated baclofen inhibition (6 of 9). Bicuculline attenuated the effect of GABA but not that of baclofen (4 of 4). In summary, RVLM presympathetic neurons have somatodendritic GABAB receptors that may contribute to baclofen-induced hypotension in humans.


1996 ◽  
Vol 75 (5) ◽  
pp. 2150-2156 ◽  
Author(s):  
T. Sawaguchi ◽  
I. Yamane ◽  
K. Kubota

1. A gamma-aminobutyric acid (GABA) antagonist, bicuculline methiodide (BMI, 10 micrograms/microliters, 1 microliter), was locally injected into a total of 32 sites in the right premotor cortex (PM) of two rhesus monkeys that had been well-trained in a visually guided reaching task (VR) for approximately 3 yr. The monkey initiated the task by pressing a central hold lever with its left hand, and this was followed by waiting (1 s), warning (central green square on a computer monitor, 0.5 s), cue (right, upper, or left square), delay (2-5 s), and go (central green square changes to red, < 1.2 s) periods. In the go period, the monkey released the hold lever and reached out to one of three target levers (left, upper, or right) that had been indicated 2-5 s previously in the cue period. 2. At three sites in the dorsal part of the PM, after the local application of BMI, reaching movements of the left forelimb, which were not part of the trained-reaching, occurred 200-300 ms after the onset of a burst of neuronal activity at the BMI injection site. This induced-reaching, which was designated a "forced-reaching" movement, occurred while the monkeys were pressing the hold lever before the cue appeared-i.e., during the waiting or waiting period. No reaching occurred when the burst did not appear. Furthermore, trajectories and electromyograms of the forelimbs during the forced-reaching movements were similar to those in the trained-reaching movements in the VR task. 3. These results suggest that restricted sites in the dorsal PM of monkeys are involved in the initiation and/or execution of trained-reaching movements and that GABAergic inhibition at these sites normally suppresses this initiation/execution unless it is required. By relaxing GABAergic suppression, the dorsal PM might send a command to a neuronal system that is associated with trained reaching to recruit the system, thereby initiating and/or executing the trained reaching.


2020 ◽  
Vol 19 (11) ◽  
pp. 1224-1229 ◽  
Author(s):  
Alim Abdurahman ◽  
Timothy J. H. Hele ◽  
Qinying Gu ◽  
Jiangbin Zhang ◽  
Qiming Peng ◽  
...  

2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Lung-Chien Chen ◽  
Yi-Tsung Chang ◽  
Ching-Ho Tien ◽  
Yu-Chun Yeh ◽  
Zong-Liang Tseng ◽  
...  

AbstractThis work presents a method for obtaining a color-converted red light source through a combination of a blue GaN light-emitting diode and a red fluorescent color conversion film of a perovskite CsPbI3/TOPO composite. High-quality CsPbI3 quantum dots (QDs) were prepared using the hot-injection method. The colloidal QD solutions were mixed with different ratios of trioctylphosphine oxide (TOPO) to form nanowires. The color conversion films prepared by the mixed ultraviolet resin and colloidal solutions were coated on blue LEDs. The optical and electrical properties of the devices were measured and analyzed at an injection current of 50 mA; it was observed that the strongest red light intensity was 93.1 cd/m2 and the external quantum efficiency was 5.7% at a wavelength of approximately 708 nm when CsPbI3/TOPO was 1:0.35.


Sign in / Sign up

Export Citation Format

Share Document