Light responses from one type of ON-OFF amacrine cells in the rabbit retina

1995 ◽  
Vol 74 (6) ◽  
pp. 2460-2468 ◽  
Author(s):  
R. F. Dacheux ◽  
E. Raviola

1. The light responses from one type of ON-OFF amacrine cell were recorded intracellularly in the superfused rabbit retina under various conditions of light adaptation. These recordings were obtained from cells located in a central area. 5-7 mm inferior and directly below the optic nerve head. 2. ON-OFF amacrine cells responded to the initiation and termination of light stimuli with transient depolarizations. Their receptive fields were approximately 0.8-1 mm diam and did not exhibit antagonistic center-and-surround organization. 3. The cells received rod input because they responded to very dim scotopic stimuli. With prolonged dark adaptation, the cells became more sensitive to the initiation than termination of the stimulus, because the ON component of the light response had a lower threshold than the OFF component. 4. The cells continued to respond to test flashes when the retina was adapted to a background illumination of rod-saturating intensity. Thus ON-OFF amacrine cells also receive cone input. Under these photopic conditions, a secondary afterpotential was observed following the OFF component. Its characteristics were different from those of the rod aftereffect reported in other retinal cells of the rabbit because its latency and amplitude changed with increasing stimulus intensity. 5. Intracellular injections of horseradish peroxidase showed that the recordings were obtained from a class of ON-OFF amacrine cells whose wide-field, unistratified dendrites were rigorously confined to the middle of the inner plexiform layer or stratum 3. 6. The conspicuous rod and cone inputs into a class of amacrine cells that are connected neither to rod bipolars nor to All amacrine cells strongly support the idea that in the rabbit the rod pathway uses cone bipolars as interneurons to distribute scotopic signals to ganglion and cone-driven amacrine cells.

1992 ◽  
Vol 8 (4) ◽  
pp. 373-378 ◽  
Author(s):  
Giovanni Casini ◽  
Nicholas C. Brecha

AbstractVasoactive intestinal polypeptide (VIP) immunoreactive (IR) neurons in the rabbit retina constitute a population of wide-field amacrine cells. To better define this cell population, we examined the coexpression of VIP with other putative retinal transmitters or their biosynthetic enzymes, including γ-aminobutyric acid (GABA), tyrosine hydroxylase (TH), and somatostatin (SRIF). Colchicine-treated retinas were immersion fixed in 4% paraformaldehyde. The retinas were cut either perpendicular or parallel to the vitreal surface and processed by double-label immunofluorescence techniques using antibodies directed to VIP, GABA, TH, and SRIF. The immunoreactive staining patterns obtained with these antibodies were the same as those described in previous studies. GABA-IR neurons were localized to the proximal inner nuclear layer (INL) and ganglion cell layer (GCL) and processes were distributed throughout the inner plexiform layer (IPL). TH- and SR1F-IR neurons were sparsely distributed to the proximal INL and GCL, respectively. TH-IR processes ramified in laminae 1, 3, and 5, and SRIF-1R processes in laminae 1 and 5 of the IPL. Colocalization experiments showed that all VIP-IR neurons contain GABA immunoreactivity. In contrast, colocalization of VIP and TH or SRIF immunoreactivities was never observed. These results demonstrate that VIP-IR wide-field amacrines of the rabbit retina make up a neurochemically and morphologically distinct subpopulation of the GABA-IR amacrine cell population. Furthermore, VIP-IR amacrine cells constitute a distinct group with respect to the TH- and SRIF-IR amacrine cells.


2000 ◽  
Vol 17 (5) ◽  
pp. 769-780 ◽  
Author(s):  
NICOLE MENGER ◽  
HEINZ WÄSSLE

In addition to the well-studied AII amacrine cell, there is another amacrine cell type participating in the rod pathway of the mammalian retina. In cat, this cell is called the A17 amacrine cell, and in rabbits, it is called the indoleamine-accumulating amacrine cell (S1 and S2); however, the presence of the corresponding cell type has not yet been described in detail for the rat retina. To this end, we injected amacrine cells with Neurobiotin in vertical retinal slices. After histological processing, we were able to reconstruct the morphology of a wide-field amacrine cell which showed characteristics of A17 and S1/S2 amacrine cells. The rat wide-field amacrine cells exhibited the same stratification pattern, their dendrites bore varicosities and ramified in sublamina 5 of the inner plexiform layer (IPL), and they were dye-coupled to other amacrine cells. To determine whether those amacrine cells shared electrophysiological characteristics as well, we performed whole-cell patch-clamp recordings and examined their voltage-activated currents and neurotransmitter-induced currents. We never observed voltage-gated Na+ currents and spike-like potentials upon depolarization by current injection in these cells. We identified GABA- and glycine-sensitive Cl− currents that could be blocked by bicuculline and strychnine, respectively. We also observed kainate- and AMPA-activated currents, which could be inhibited by the application of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). Finally, a 400-ms full-field light stimulus was used to characterize the light responses of A17 amacrine cells. The light ON-induced inward current could be suppressed by the application of 2,3-Dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulphonamide (NBQX), while the majority of the light OFF-induced current was inhibited by bicuculline and reduced to a smaller extent by NBQX. CPP, an NMDA blocker, had no effect on the light response of rat A17 amacrine cells.


1985 ◽  
Vol 224 (1237) ◽  
pp. 475-488 ◽  

When cat retina is incubated in vitro with the fluorescent dye, 4',6- diamidino-2-phenyl-indole (DAPI), a uniform population of neurons is brightly labelled at the inner border of the inner nuclear layer. The dendritic morphology of the DAPI-labelled cells was defined by iontophoretic injection of Lucifer yellow under direct microscopic control: all the filled cells had the narrow-field bistratified morphology that is distinctive of the A ll amacrine cells previously described from Golgistained retinae. Although the A ll amacrines are principal interneurons in the rod-signal pathway, their density distribution does not follow the topography of the rod receptors, but peaks in the central area like the cone receptors and the ganglion cells. There are some 512000 A ll amacrines in the cat retina and their density ranges from 500 cells per square millimetre at the superior margin to 5300 cells per square millimetre in the centre (retinal area is 450 mm2). The isodensity contours are kite-shaped, particularly at intermediate densities, with a horizontal elongation towards nasal retina. The cell body size and the dendritic dimensions of A ll amacrines increase with decreasing cell density. The lobular dendrites in sublamina a of the inner plexiform layer span a restricted field of 16—45 pm diameter, while the arboreal dendrites in sublamina b form a varicose tree of 18—95 pm diameter. The dendritic field coverage of the lobular appendages is close to 1.0 (+ 0.2) at all eccentricities whereas the coverage of the arboreal dendrites doubles within the first 1.5 mm and then remains constant at 3.8 ( + 0.7) throughout the periphery.


1996 ◽  
Vol 13 (6) ◽  
pp. 1099-1107 ◽  
Author(s):  
Péter Buzás ◽  
Sára Jeges ◽  
Robert Gábriel

AbstractThe main route of information flow through the vertebrate retina is from the photoreceptors towards the ganglion cells whose axons form the optic nerve. Bipolar cells of the frog have been so far reported to contact mostly amacrine cells and the majority of input to ganglion cells comes from the amacrines. In this study, ganglion cells of frogs from two species (Bufo marinus, Xenopus laevis) were filled retrogradely with horseradish peroxidase. After visualization of the tracer, light-microscopic cross sections showed massive labeling of the somata in the ganglion cell layer as well as their dendrites in the inner plexiform layer. In cross sections, bipolar output and ganglion cell input synapses were counted in the electron microscope. Each synapse was assigned to one of the five equal sublayers (SLs) of the inner plexiform layer. In both species, bipolar cells were most often seen to form their characteristic synaptic dyads with two amacrine cells. In some cases, however, the dyads were directed to one amacrine and one ganglion cell dendrite. This type of synapse was unevenly distributed within the inner plexiform layer with the highest occurrence in SL2 both in Bufo and Xenopus. In addition, SL4 contained also a high number of this type of synapse in Xenopus. In both species, we found no or few bipolar to ganglion cell synapses in the marginal sublayers (SLs 1 and 5). In Xenopus, 22% of the bipolar cell output synapses went onto ganglion cells, whereas in Bufo this was only 10%. We conclude that direct bipolar to ganglion cell information transfer exists also in frogs although its occurrence is not as obvious and regular as in mammals. The characteristic distribution of these synapses, however, suggests that specific type of the bipolar and ganglion cells participate in this process. These contacts may play a role in the formation of simple ganglion cell receptive fields.


2000 ◽  
Vol 17 (4) ◽  
pp. 557-566 ◽  
Author(s):  
TODD A. BLUTE ◽  
MICHAEL R. LEE ◽  
WILLIAM D. ELDRED

In the retina, nitric oxide (NO) functions in network coupling, light adaptation, neurotransmitter receptor function, and synaptic release. Neuronal nitric oxide synthase (nNOS) is present in the retina of every vertebrate species investigated. However, although nNOS can be found in every retinal cell type, little is known about the production of NO in specific cells or about the diffusion of NO within the retina. We used diaminofluorescein-2 (DAF-2) to image real-time NO production in turtle retina in response to stimulation with N-methyl-D-aspartate (NMDA). In response to NMDA, NO was produced in somata in the ganglion cell and inner nuclear layers, in synaptic boutons and processes in the inner plexiform layer, in processes in the outer plexiform layer, and in photoreceptor inner segments. This NO-dependent fluorescence production quickly reached transient peaks and declined more slowly toward baseline levels at different rates in different cells. In some cases, the NO signal was primarily confined to within 10 μm of the source, which suggests that NO may not diffuse freely through the retina. Such limited spread was not predicted and suggests that NO signal transduction may be more selective than suggested, and that NO may play significant intracellular roles in cells that produce it. Because NO-dependent fluorescence within amacrine cells can be confined to the soma, specific dendritic sites, or both with distinct kinetics, NO may function at specific synapses, modulate gene expression, or coordinate events throughout the cell.


1988 ◽  
Vol 235 (1280) ◽  
pp. 203-219 ◽  

A distinct population of wide-field, unistratified amacrine cells are shown to be selectively stained by using neurofibrillar methods in rabbit and cat retinae. Their cell bodies may be located in the inner nuclear, inner plexiform or ganglion cell layers and they branch predominantly in stratum 2 of the inner plexiform layer. Characteristically, each cell has two or more long-range distal processes which extend for 2-3 mm beyond a more symmetrical, proximal dendritic field of 0.6-0.8 mm diameter. Although the neurofibrillar long-range amacrines account for less than 1 amacrine in 500, they achieve effective coverage of the retina by both the proximal and distal dendrites.


2017 ◽  
Author(s):  
Bart M. ter Haar Romeny

AbstractThe inner plexiform layer (IPL) of mammalian retina has a precise bisublaminar organization in an inner on- and an outer off-layer, innervated by spatially segregated on- and off-cone bipolar cell inputs. Also, the processes of starburst amacrine cells are segregated into on and off sublaminae of the IPL. Distances between overlapping on-off pair retinal ganglion cell dendritic tree centers are markedly smaller than between on-on or off-off centers, indicating simultaneously sampling the same space. Despite dekades of research, no good model exists for the role of the on- and off pathways. Here I propose that the on- and off pairs are temporally subtracted, with one channel delayed in time, likely in a higher cortical center. The on- and off receptive fields give at every retinal location an I+ and I-signal, where I is intensity, velocity, color. Subsequent frame subtraction is a basis function of every surveillance camera for vision, and in MPEG video/sound compression. The model explains the many phenomena observed when the retinal image is stabilized. The separation of layers in the LGN fits with the notion of a time delay at higher cortical level. The directionalty observed in micro-saccades is typically perpendicular to the main edges in the scene. Precise measurement of spatio-temporal receptive field kernels shows that time is processed in the visual system as a real-time process, i.e. with a logarithmic time axis. As only contours and textures are transmitted, it is a very effective design strategy of the visual system to conserve energy, in a brain that typically uses 25 Watt and very low neuron firing frequencies. The higher visual centers perform the fill-in (inpainting) with such efficiency, that the subtraction always goes unnoticed.


2008 ◽  
Vol 100 (4) ◽  
pp. 2077-2088 ◽  
Author(s):  
Hain-Ann Hsueh ◽  
Alyosha Molnar ◽  
Frank S. Werblin

We studied the interactions between excitation and inhibition in morphologically identified amacrine cells in the light-adapted rabbit retinal slice under patch clamp. The majority of on amacrine cells received glycinergic off inhibition. About half of the off amacrine cells received glycinergic on inhibition. Neither class received any GABAergic inhibition. A minority of on, off, and on–off amacrine cells received both glycinergic on and GABAergic off inhibition. These interactions were found in cells with diverse morphologies having both wide and narrow processes that stratify in single or multiple layers of the inner plexiform layer (IPL). Most on–off amacrine cells received no inhibition and have monostratified processes confined to the middle of the IPL. The most common interaction between amacrine cells that we measured was “crossover inhibition,” where off inhibits on and on inhibits off. Although the morphology of amacrine cells is diverse, the interactions between excitation and inhibition appear to be relatively limited and specific.


1985 ◽  
Vol 54 (3) ◽  
pp. 592-614 ◽  
Author(s):  
R. Nelson ◽  
H. Kolb

A17 amacrine cells of the cat retina have been penetrated with horseradish peroxidase (HRP)-filled microelectrodes and their light responses recorded. These cells depolarize in sustained fashion to steps of light. Viewed in retinal wholemounts, HRP-injected cells have a spokelike radiating splay of very fine dendrites (0.1 micron diam) passing diffusely through all strata of the inner plexiform layer (IPL) to run primarily in strata 4 and 5. There are as many as 1,000 large, regularly spaced beads borne on the 500- to 1,200-micron diameter dendritic field. Cell body sizes range from 9 to 13 micron. In the electron microscope, the dendritic beads in sublamina b of the IPL are seen to synapse reciprocally with rod bipolar axon terminals. Dendritic beads in sublamina a rarely make synapses, but between the beads in this layer, input from at least three distinctive amacrine profiles occurs. Though diffuse at the light microscopic level, A17 thus appears to be structurally bistratified, with amacrine input in sublamina a and bipolar input in sublamina b. It is likely that A17 can be identified with AI. A17 signals are driven almost exclusively by rods. The spectral sensitivity peaks at 507 nm, identical with that of pigment epithelial cells. Light adaptation abolishes all but a small hyperpolarizing component of the signal. The overall intensity-response range is similar to that of AII amacrine cells. When receptive fields of A17 cells are mapped with slit stimuli, a broad, single-component curve is measured approximately covering the dendritic field. The receptive field is well described by a linear electrical model with a mean space constant of 259 +/- 97 micron (SD). On the other hand, responses to centered slit stimuli of varying width yielded space constants of only 38 +/- 29 micron. A17 amacrines are thus broad-field components of the cat's rod system but with very little capacity for spatial integration. Receptive-field measurements are not supportive of the notion of isolated dendritic regions.


2015 ◽  
Vol 114 (4) ◽  
pp. 2431-2438 ◽  
Author(s):  
Alejandro Akrouh ◽  
Daniel Kerschensteiner

Amacrine cells (ACs) are the most diverse class of neurons in the retina. The variety of signals provided by ACs allows the retina to encode a wide range of visual features. Of the 30–50 AC types in mammalian species, few have been studied in detail. Here, we combine genetic and viral strategies to identify and to characterize morphologically three vasoactive intestinal polypeptide-expressing GABAergic AC types (VIP1-, VIP2-, and VIP3-ACs) in mice. Somata of VIP1- and VIP2-ACs reside in the inner nuclear layer and somata of VIP3-ACs in the ganglion cell layer, and they show asymmetric distributions along the dorsoventral axis of the retina. Neurite arbors of VIP-ACs differ in size (VIP1-ACs ≈ VIP3-ACs > VIP2-ACs) and stratify in distinct sublaminae of the inner plexiform layer. To analyze light responses and underlying synaptic inputs, we target VIP-ACs under 2-photon guidance for patch-clamp recordings. VIP1-ACs depolarize strongly to light increments (ON) over a wide range of stimulus sizes but show size-selective responses to light decrements (OFF), depolarizing to small and hyperpolarizing to large stimuli. The switch in polarity of OFF responses is caused by pre- and postsynaptic surround inhibition. VIP2- and VIP3-ACs both show small depolarizations to ON stimuli and large hyperpolarizations to OFF stimuli but differ in their spatial response profiles. Depolarizations are caused by ON excitation outweighing ON inhibition, whereas hyperpolarizations result from pre- and postsynaptic OFF-ON crossover inhibition. VIP1-, VIP2-, and VIP3-ACs thus differ in response polarity and spatial tuning and contribute to the diversity of inhibitory and neuromodulatory signals in the retina.


Sign in / Sign up

Export Citation Format

Share Document