Local mechanisms of phase-dependent postsynaptic modifications of NMDA-induced oscillations in the abducens motoneurons: a simulation study

1996 ◽  
Vol 76 (2) ◽  
pp. 1015-1024 ◽  
Author(s):  
I. L. Kopysova ◽  
S. M. Korogod ◽  
J. Durand ◽  
S. Tyc-Dumont

1. In vivo experiments have shown that extracellular microelectrophoretic application of N-methyl-D-aspartate (NMDA) induced oscillatory plateau potentials with bursts of action potentials in rat abducens motoneurons. The period of these slow NMDA oscillations could be altered by single trigeminal non-NMDA excitatory input delivered at low frequency during the NMDA oscillations. 2. A resetting of the oscillations was observed depending on the phase of slow oscillatory cycle during which the trigeminal excitation occurred. 3. We investigated local mechanisms responsible for the phase-dependent modifications of NMDA oscillations, including contributions of voltage and concentration transients, in the mathematical model of the isopotential membrane compartment equipped with voltage-gated Na+, K+, and Ca2+ channels, with Ca2+-dependent K+ channels, and with ligand-gated NMDA and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor channels. The faithful model was constructed with the use of models described earlier, which were modified by increasing time constants of kinetic variables of all voltage-gated conductances and by including coupled dynamics of voltages and ion concentrations. The changes in ion concentrations were produced near the membrane by transmembrane currents and removal mechanisms (pumps, diffusion). 4. This work focuses on local arrangement of voltage- and ligand-gated conductances and on local ion concentration changes in two separate pools: the postsynaptic pool of AMPA receptors and the extrasynaptic pool. In terms of the electrotonic and diffusional length constants, these pools were electrotonically close but diffusionally remote. 5. It was found that the effect of resetting can be produced by a local interaction between plateau and spike-generating conductances and glutamate receptors. 6. In vivo phase-dependent interactions between NMDA oscillations and AMPA synaptic input were reproduced by the local model only when changes in intracellular sodium and extracellular potassium concentrations were taken into account and the mechanisms of ion removal from postsynaptic pools had slower kinetics than the fast pump system operating in the extracellular pool. 7. Postsynaptic changes in ion concentrations of Na+ and K+ in intra- and extracellular layers near the membrane shift of Nernst equilibrium potentials for these ions depending on the phase of activation of synaptic input. Thus Na+ and k+ components of all transmembrane currents involved in the pattern generation are differently affected by synaptic action during the oscillations. We conclude that slow postsynaptic changes in ion concentrations near the membrane play a key role in the resetting of the NMDA oscillations.

2011 ◽  
Vol 138 (1) ◽  
pp. 95-116 ◽  
Author(s):  
James A. Fraser ◽  
Christopher L.-H. Huang ◽  
Thomas H. Pedersen

Activation of skeletal muscle fibers requires rapid sarcolemmal action potential (AP) conduction to ensure uniform excitation along the fiber length, as well as successful tubular excitation to initiate excitation–contraction coupling. In our companion paper in this issue, Pedersen et al. (2011. J. Gen. Physiol. doi:10.1085/jgp.201010510) quantify, for subthreshold stimuli, the influence upon both surface conduction velocity and tubular (t)-system excitation of the large changes in resting membrane conductance (GM) that occur during repetitive AP firing. The present work extends the analysis by developing a multi-compartment modification of the charge–difference model of Fraser and Huang to provide a quantitative description of the conduction velocity of actively propagated APs; the influence of voltage-gated ion channels within the t-system; the influence of t-system APs on ionic homeostasis within the t-system; the influence of t-system ion concentration changes on membrane potentials; and the influence of Phase I and Phase II GM changes on these relationships. Passive conduction properties of the novel model agreed with established linear circuit analysis and previous experimental results, while key simulations of AP firing were tested against focused experimental microelectrode measurements of membrane potential. This study thereby first quantified the effects of the t-system luminal resistance and voltage-gated Na+ channel density on surface AP propagation and the resultant electrical response of the t-system. Second, it demonstrated the influence of GM changes during repetitive AP firing upon surface and t-system excitability. Third, it showed that significant K+ accumulation occurs within the t-system during repetitive AP firing and produces a baseline depolarization of the surface membrane potential. Finally, it indicated that GM changes during repetitive AP firing significantly influence both t-system K+ accumulation and its influence on the resting membrane potential. Thus, the present study emerges with a quantitative description of the changes in membrane potential, excitability, and t-system ionic homeostasis that occur during repetitive AP firing in skeletal muscle.


2021 ◽  
Vol 22 (16) ◽  
pp. 8658
Author(s):  
Azin EbrahimAmini ◽  
Shanthini Mylvaganam ◽  
Paolo Bazzigaluppi ◽  
Mohamad Khazaei ◽  
Alexander Velumian ◽  
...  

A normally functioning nervous system requires normal extracellular potassium ion concentration ([K]o). Throughout the nervous system, several processes, including those of an astrocytic nature, are involved in [K]o regulation. In this study we investigated the effect of astrocytic photostimulation on [K]o. We hypothesized that in vivo photostimulation of eNpHR-expressing astrocytes leads to a decreased [K]o. Using optogenetic and electrophysiological techniques we showed that stimulation of eNpHR-expressing astrocytes resulted in a significantly decreased resting [K]o and evoked K responses. The amplitude of the concomitant spreading depolarization-like events also decreased. Our results imply that astrocytic membrane potential modification could be a potential tool for adjusting the [K]o.


Blood ◽  
1983 ◽  
Vol 61 (1) ◽  
pp. 180-185
Author(s):  
LT Friedhoff ◽  
M Sonenberg

The membrane potential of the human platelet was investigated using the membrane potential probes 3,3′-dipropyl-2,2′-thiadicarbocyanine iodide and tritiated triphenylmethylphosphonium bromide. The membrane potential in physiologic buffer was estimated to be 52–60 mV inside negative. The membrane was depolarized when extracellular potassium or hydrogen ion concentrations were increased. Changes in extracellular sodium, chloride, or calcium ion concentration had no measurable effect on membrane potential. Elevated extracellular potassium has been shown to increase platelet sensitivity to the aggregating agent, adenosine diphosphate. Our results show that changes in extracellular ion concentrations that depolarize platelets increase platelet sensitivity to aggregating agents. These results suggest that membrane potential changes may play a role in modulating the response of platelets to aggregating agents.


Blood ◽  
1983 ◽  
Vol 61 (1) ◽  
pp. 180-185 ◽  
Author(s):  
LT Friedhoff ◽  
M Sonenberg

Abstract The membrane potential of the human platelet was investigated using the membrane potential probes 3,3′-dipropyl-2,2′-thiadicarbocyanine iodide and tritiated triphenylmethylphosphonium bromide. The membrane potential in physiologic buffer was estimated to be 52–60 mV inside negative. The membrane was depolarized when extracellular potassium or hydrogen ion concentrations were increased. Changes in extracellular sodium, chloride, or calcium ion concentration had no measurable effect on membrane potential. Elevated extracellular potassium has been shown to increase platelet sensitivity to the aggregating agent, adenosine diphosphate. Our results show that changes in extracellular ion concentrations that depolarize platelets increase platelet sensitivity to aggregating agents. These results suggest that membrane potential changes may play a role in modulating the response of platelets to aggregating agents.


1988 ◽  
Vol 255 (1) ◽  
pp. F158-F166
Author(s):  
G. Planelles ◽  
T. Anagnostopoulos

This study was undertaken to determine the passive electrophysiological properties of the diffusive barriers of the late distal tubule (LDT) in Necturus. The transepithelial resistance (RT) determined by cable analysis was 1,130 omega.cm2, which puts the LDT in the class of "tight" epithelia. Using two different methods, we did not find significant cell-to-cell electrical coupling. The fractional apical resistance was 0.93, and it did not vary with distance from the current-injecting electrode. Relative permeabilities of K+, Na+, and Cl- during peritubular ion concentration changes were assessed by circuit analysis. The conclusions are as follows. The basolateral cell membrane is highly permeable to K+; its apparent K+ transference number is 0.78. Basolateral chloride transference was very small. Sodium removal from peritubular fluid produced depolarization, suggesting carrier-mediated electrogenic Na+ transport. The high fractional resistance of the apical cell membrane prevented assessment of apical transference numbers. However, Cl- removal from luminal fluid produced cell hyperpolarization; the underlying mechanism has not been established with certainty. The paracellular pathway does not discriminate between Na+, Cl-, and some of their substitutes; it is poorly permeable to gluconate and prefers K+ to Na+.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1716
Author(s):  
Kun Tong ◽  
Ruotian Zhang ◽  
Fengzhi Ren ◽  
Tao Zhang ◽  
Junlin He ◽  
...  

Novel α-aminoamide derivatives containing different benzoheterocyclics moiety were synthesized and evaluated as voltage-gated sodium ion channels blocks the treatment of pain. Compounds 6a, 6e, and 6f containing the benzofuran group displayed more potent in vivo analgesic activity than ralfinamide in both the formalin test and the writhing assay. Interestingly, they also exhibited potent in vitro anti-Nav1.7 and anti-Nav1.8 activity in the patch-clamp electrophysiology assay. Therefore, compounds 6a, 6e, and 6f, which have inhibitory potency for two pain-related Nav targets, could serve as new leads for the development of analgesic medicines.


Genetics ◽  
2021 ◽  
Author(s):  
Christopher A Piggott ◽  
Zilu Wu ◽  
Stephen Nurrish ◽  
Suhong Xu ◽  
Joshua M Kaplan ◽  
...  

Abstract The junctophilin family of proteins tether together plasma membrane (PM) and endoplasmic reticulum (ER) membranes, and couple PM- and ER-localized calcium channels. Understanding in vivo functions of junctophilins is of great interest for dissecting the physiological roles of ER-PM contact sites. Here, we show that the sole C. elegans junctophilin JPH-1 localizes to discrete membrane contact sites in neurons and muscles and has important tissue-specific functions. jph-1 null mutants display slow growth and development due to weaker contraction of pharyngeal muscles, leading to reduced feeding. In the body wall muscle, JPH-1 co-localizes with the PM-localized EGL-19 voltage-gated calcium channel and ER-localized UNC-68/RyR calcium channel, and is required for animal movement. In neurons, JPH-1 co-localizes with the membrane contact site protein Extended-SYnaptoTagmin 2 (ESYT-2) in soma, and is present near presynaptic release sites. Interestingly, jph-1 and esyt-2 null mutants display mutual suppression in their response to aldicarb, suggesting that JPH-1 and ESYT-2 have antagonistic roles in neuromuscular synaptic transmission. Additionally, we find an unexpected cell non-autonomous effect of jph-1 in axon regrowth after injury. Genetic double mutant analysis suggests that jph-1 functions in overlapping pathways with two PM-localized voltage-gated calcium channels, egl-19 and unc-2, and unc-68/RyR for animal health and development. Finally, we show that jph-1 regulates the colocalization of EGL-19 and UNC-68 and that unc-68/RyR is required for JPH-1 localization to ER-PM puncta. Our data demonstrate important roles for junctophilin in cellular physiology, and also provide insights into how junctophilin functions together with other calcium channels in vivo.


1984 ◽  
Vol 52 (3) ◽  
pp. 421-434 ◽  
Author(s):  
U. Heinemann ◽  
I. Dietzel

Changes in extracellular K+ concentration [( K+]o) were measured with ion-selective microelectrodes in chronic epileptic foci induced by topical application of A1(OH)3 cream on the sensorimotor cortex of cats. The foci were morphologically characterized by a scar surrounded by an area of marked gliosis. Base-line levels of [K+]o in gliotic tissue and its immediate border zone were comparable to those in normal cortical tissue. Peak levels of [K+]o obtained during repetitive electrical stimulation of the cortical surface and thalamic ventrobasal complex were only slightly enhanced with 11.6 mM in chronic foci and 10.8 mM in normal cortex. Iontophoretic K+ application into gliotic tissue was accompanied by slow negative potential shifts comparable to those observed in normal cortex. Passage of constant current through gliotic tissue caused local [K+]o changes in the vicinity of the current-passing electrode. Since these [K+]o changes were similar to those observed in normal tissue, it was concluded that the amount of transcellularly transported K ions was comparable in both tissues. Changes in the size of extracellular space (ES) were investigated by measuring local concentration changes of iontophoretically injected tetramethylammonium and choline ions. During stimulus-induced seizure activity, the ES shrank outside the gliotic area at sites of maximal [K+]o elevation, while it increased at sites within the gliotic tissue where [K+]o rises were smaller. The results suggest that the spatial buffer capacity of gliotic tissue for K+ is not severely impaired. Since the relationship between rises in [K+]o and subsequent undershoots at sites immediately bordering the gliotic tissue is comparable to that in normal cortex, the ability of this epileptic tissue for active K+ uptake appears to be unaffected. This conclusion is further supported by the observation that iontophoretically induced rises in [K+]o during undershoots are reduced to a similar extent as in normal cortex.


1997 ◽  
Vol 45 (3) ◽  
pp. 165-182 ◽  
Author(s):  
Hiroaki Minoura ◽  
Yasunobu Iwasaka

1999 ◽  
Vol 354 (1381) ◽  
pp. 411-416 ◽  
Author(s):  
Bomie Han ◽  
Gerald D. Fischbach

The neuromuscular junction is a specialized synapse in that every action potential in the presynaptic nerve terminal results in an action potential in the postsynaptic membrane, unlike most interneuronal synapses where a single presynaptic input makes only a small contribution to the population postsynaptic response. The postsynaptic membrane at the neuromuscular junction contains a high density of neurotransmitter (acetylcholine) receptors and a high density of voltage–gated Na + channels. Thus, the large acetylcholine activated current occurs at the same site where the threshold for action potential generation is low. Acetylcholine receptor inducing activity (ARIA), a 42 kD protein, that stimulates synthesis of acetylcholine receptors and voltage–gated Na + channels in cultured myotubes, probably plays the same roles at developing and mature motor endplates in vivo . ARIA is synthesized as part of a larger, transmembrane, precursor protein called proARIA. Delivery of ARIA from motor neuron cell bodies in the spinal cord to the target endplates involves several steps, including proteolytic cleavage of proARIA. ARIA is also expressed in the central nervous system and it is abundant in the molecular layer of the cerebellum. In this paper we describe our first experiments on the processing and release of ARIA from subcellular fractions containing synaptosomes from the chick cerebellum as a model system.


Sign in / Sign up

Export Citation Format

Share Document