Protein kinase modulation of GABAA currents in rabbit retinal rod bipolar cells

1996 ◽  
Vol 76 (5) ◽  
pp. 3070-3086 ◽  
Author(s):  
M. A. Gillette ◽  
R. F. Dacheux

1. Protein kinase modulation of gamma-aminobutyric acid-A (GABAA)- and glycine-activated Cl- currents in freshly dissociated, morphologically identified rabbit retinal rod bipolar cells was studied under voltage clamp with the use of the whole cell patch-clamp technique. Responses to pulses of GABA and glycine were monitored before, during, and after application of adenosine 3',5'-cyclic monophosphate (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC) activators, inactive analogues, and inhibitors. 2. Bath perfusion with either forskolin, an adenylate cyclase activator, or its inactive analogue, 1,9 dideoxyforskolin, reduced the GABA-activated Cl- currents by 30–50%; coapplication of N-[2-(Methylamino)ethyl]-5-isoquinolinesulfonamide hydrochloride (H-8), a PKA inhibitor, did not prevent the forskolin effects. The membrane-permeable cAMP analogues, 8-bromo-cAMP and 8-(4-Chlorophenylthio)-cAMP, and intracellularly dialyzed cAMP, did not modulate either the GABA- or glycine-activated Cl- current. Perfusion of the phosphodiesterase inhibitor 3-isobutyl-1-methylxantine (IBMX) had no direct effect on the GABA-activated current and did not alter the results with cAMP or its membrane-permeable analogues. Collectively, these results make it very unlikely that PKA represents an important mechanism of either GABAA or glycine channel modulation in the rabbit rod bipolar cell. 3. Although the isoquinoline sulfonamide protein kinase inhibitor H-8 was without discernible effect, the related compounds 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine dihydrochlorine (H-7) and N-(2-Aminoethyl)-5-isoquinolinesulfonamide dihydrochloride (H-9) both dramatically reduced the GABA response. H-7 also strongly reduced the response to glycine, whereas H-8 had no effect and H-9 had an intermediate effect. Because only certain members of this inhibitor class of agents proved effective, and their effectiveness appeared unrelated to the established activity profiles, these agents probably inhibit the Cl- currents in a phosphorylation-independent manner. Direct interaction of these inhibitors with binding sites in the GABAA receptor-channel complex has been previously reported in some other preparations. 4. The phorbol ester and PKC activator phorbol 12,13 dibutyrate (PDB) led to a 35-55% reduction in the GABA-activated Cl- current of the rod bipolar cell. The broad-spectrum kinase inhibitor staurosporine, and the more PKC-specific inhibitor calphostin C, had no direct effect on GABA responses, but prevented Cl- current reduction when coapplied with PDB. Phorbol 12-myristate 13-acetate (PMA) reduced the GABA-activated current in a fashion very similar to PDB. Staurosporine and calphostin C blocked the PMA effect. No reduction of Cl- current was seen with the inactive analogue, 4-alpha-PMA, used as a control for PKC-independent phorbol ester effects. 5. PDB effectively reduced the GABA-activated Cl- current of the rod bipolar cell at low concentrations, whereas PMA had a diminished effect at low concentrations. This is consistent with the reported concentration-dependent abilities of these agents to promote translocation of PKC-alpha immunoreactivity from the membrane to the cytosolic compartment in the rabbit retinal rod bipolar cell. Collectively, the data from phorbol esters, inactive analogues, and kinase inhibitors support the existence of a PKC-mediated mechanism for GABA-activated Cl- current reduction in these cells. 6. The naphthalenesulfonamide PKC activator N-(n-Heptyl)-5-chloro-1-naphthalenesulfonamide (SC-10) also potently and reversibly reduced the GABA-activated current. Staurosporine and calphostin C eliminated this effect. When the nonhydrolyzable guanosine 5'-triphosphate (GTP) analogue guanosine 5'-O-(3-thiotriphosphate) tetralithium salt (GTP-gamma-S) replaced GTP in the recording pipette, the SC-10-mediated GABA current reduction became irreversible.(ABSTRACT TRUNCATED)

2019 ◽  
Author(s):  
Colin M. Wakeham ◽  
Phillip A. Wilmarth ◽  
Jennifer M. Cunliffe ◽  
John E. Klimek ◽  
Gaoying Ren ◽  
...  

AbstractAdjusting to a wide range of light intensities is an essential feature of retinal rod bipolar cell (RBC) function. While persuasive evidence suggests this modulation involves phosphorylation by protein kinase C-alpha (PKCα), the targets of PKCα phosphorylation in the retina have not been identified. PKCα activity and phosphorylation in RBCs was examined by immunofluorescence confocal microscopy using a conformation-specific PKCα antibody and antibodies to phosphorylated PKC motifs. PKCα activity was dependent on light and expression of TRPM1, and RBC dendrites were the primary sites of light-dependent phosphorylation. PKCα-dependent retinal phosphoproteins were identified using a phosphoproteomics approach to compare total protein and phosphopeptide abundance between phorbol ester-treated wild type and PKCα knockout (PKCα-KO) mouse retinas. Phosphopeptide mass spectrometry identified over 1100 phosphopeptides in mouse retina, with 12 displaying significantly greater phosphorylation in WT compared to PKCα-KO samples. The differentially phosphorylated proteins fall into the following functional groups: cytoskeleton/trafficking (4 proteins), ECM/adhesion (2 proteins), signaling (2 proteins), transcriptional regulation (3 proteins), and homeostasis/metabolism (1 protein). Two strongly differentially expressed phosphoproteins, BORG4 and TPBG, were localized to the synaptic layers of the retina, and may play a role in PKCα-dependent modulation of RBC physiology. Data are available via ProteomeXchange with identifier PXD012906.SignificanceRetinal rod bipolar cells (RBCs), the second-order neurons of the mammalian rod visual pathway, are able to modulate their sensitivity to remain functional across a wide range of light intensities, from starlight to daylight. Evidence suggests that this modulation requires the serine/threonine kinase, PKCα, though the specific mechanism by which PKCα modulates RBC physiology is unknown. This study examined PKCα phosophorylation patterns in mouse rod bipolar cells and then used a phosphoproteomics approach to identify PKCα-dependent phosphoproteins in the mouse retina. A small number of retinal proteins showed significant PKCα-dependent phosphorylation, including BORG4 and TPBG, suggesting a potential contribution to PKCα-dependent modulation of RBC physiology.HighlightsPKCα is a major source of phosphorylation in retinal RBC dendrites and its activity in RBCs is light dependent.Proteins showing differential phosphorylation between phorbol ester-treated wild type and PKCα-KO retinas belong to the following major functional groups: cytoskeleton/trafficking (4 proteins), ECM/adhesion (2 proteins), signaling (2 proteins), transcriptional regulation (3 proteins), and homeostasis/metabolism (1 protein).The PKCα-dependent phosphoproteins, BORG4 and TPBG, are present in the synaptic layers of the retina and may be involved in PKCα-dependent modulation of RBC physiology.


2008 ◽  
Vol 25 (4) ◽  
pp. 523-533 ◽  
Author(s):  
QUN-FANG WAN ◽  
ALEJANDRO VILA ◽  
ZHEN-YU ZHOU ◽  
RUTH HEIDELBERGER

AbstractTo better understand synaptic signaling at the mammalian rod bipolar cell terminal and pave the way for applying genetic approaches to the study of visual information processing in the mammalian retina, synaptic vesicle dynamics and intraterminal calcium were monitored in terminals of acutely isolated mouse rod bipolar cells and the number of ribbon-style active zones quantified. We identified a releasable pool, corresponding to a maximum of ≈35 vesicles/ribbon-style active zone. Following depletion, this pool was refilled with a time constant of ≈7 s. The presence of a smaller, rapidly releasing pool and a small, fast component of refilling was also suggested. Following calcium channel closure, membrane surface area was restored to baseline with a time constant that ranged from 2 to 21 s depending on the magnitude of the preceding Ca2+ transient. In addition, a brief, calcium-dependent delay often preceded the start of onset of membrane recovery. Thus, several aspects of synaptic vesicle dynamics appear to be conserved between rod-dominant bipolar cells of fish and mammalian rod bipolar cells. A major difference is that the number of vesicles available for release is significantly smaller in the mouse rod bipolar cell, both as a function of the total number per neuron and on a per active zone basis.


1997 ◽  
Vol 25 (3-4) ◽  
pp. 333-343 ◽  
Author(s):  
Hidetaka Yokoe ◽  
Atsuko Masumi-Fukazawa ◽  
Masataka Sunohara ◽  
Hideki Tanzawa ◽  
Kenichi Sato ◽  
...  

1991 ◽  
Vol 112 (6) ◽  
pp. 1241-1247 ◽  
Author(s):  
N Usuda ◽  
Y Kong ◽  
M Hagiwara ◽  
C Uchida ◽  
M Terasawa ◽  
...  

We report the immunohistochemical localization of protein kinase C isozymes (types I, II, and III) in the rabbit retina using the monospecific monoclonal antibodies MC-1a, MC-2a, and MC-3a. Using immunoblot analysis of partially purified protein kinase C preparations of rabbit retina, types II and III isozymes alone were detected. The activity of type III was the stronger. By light microscopic immunohistochemical analysis, retinal neurons were negative for type I and positive for type II and type III isozymes. Type II was more diffusely distributed through the retinal layers, but was distinctive in ganglion cells, bipolar cells, and outer segments. The immunoreactivity was stronger for type III isozyme, and it was observed in mop (rod) bipolar cells and amacrine cells. By using immunoelectron microscopy, the cytoplasm of the cell body, the axon, and dendrites of the mop bipolar cells were strongly immunoreactive for type III. The so-called rod bipolar cells were for the first time seen to form synapses with rod photoreceptor cells. These differential localizations of respective isozymes in retinal neurons suggest that each isozyme has a different site of function in each neuron.


Neuroreport ◽  
1996 ◽  
Vol 7 (13) ◽  
pp. 2176-2180 ◽  
Author(s):  
Cecilia F. Vaquero ◽  
Almudena Velasco ◽  
Pedro de la Villa

2002 ◽  
Vol 19 (5) ◽  
pp. 549-562 ◽  
Author(s):  
BOZENA FYK-KOLODZIEJ ◽  
WENHUI CAI ◽  
ROBERTA G. POURCHO

Immunocytochemical localization was carried out for five isoforms of protein kinase C (PKC) in the cat retina. In common with other mammalian species, PKCα was found in rod bipolar cells. Staining was also seen in a small population of cone bipolar cells with axon terminals ramifying near the middle of the inner plexiform layer (IPL). PKCβI was localized to rod bipolar cells, one class of cone bipolar cell, and numerous amacrine and displaced amacrine cells. Staining for PKCβII was seen in three types of cone bipolar cells as well as in amacrine and ganglion cells. Immunoreactivity for both PKCε and PKCζ was found in rod bipolar cells; PKCε was also seen in a population of cone bipolar cells and a few amacrine and ganglion cells whereas PKCζ was found in all ganglion cells. Double-label immunofluorescence studies showed that dendrites of the two PKCβII-positive OFF-cone bipolar cells exhibit immmunoreactivity for the kainate-selective glutamate receptor GluR5. The third PKCβII cone bipolar is an ON-type cell and did not stain for GluR5. The retinal distribution of these isoforms of PKC is consistent with a role in modulation of various aspects of neurotransmission including synaptic vesicle release and regulation of receptor molecules.


1991 ◽  
Vol 6 (6) ◽  
pp. 629-639 ◽  
Author(s):  
Brigitte Müller ◽  
Leo Peichl

AbstractThe tree shrew has a cone-dominated retina with a rod proportion of 5%, in contrast to the common mammalian pattern of rod-dominated retinae. As a first step to elucidate the rod pathway in the tree shrew retina, we have demonstrated the presence of rod bipolar cells and studied their morphology and distribution by light and electron microscopy.Rod bipolar cells were labeled with an antiserum against the protein kinase C (PKC), a phosphorylating enzyme. Intense PKC immunoreactivity was found in perikarya, axons, and dendrites of rod bipolar cells. The cell bodies are located in the sclerad part of the inner nuclear layer, the dendrites ascend to the outer plexiform layer where they are postsynaptic to rod spherules, and an axon descends towards the inner plexiform layer (IPL). The axons branch, and terminate in the vitread third of the IPL where mammalian rod bipolar cells are known to terminate. Two amacrine cell processes are always seen as the postsynaptic elements (dyads). Dendritic and axonal arbors of rod bipolar cells are rather large, up to 100 μm in diameter. The topographical distribution of the rod bipolar cells was analyzed quantitatively in tangential sections.Their density ranges from 300 cells/mm2 in peripheral retina to 900 cells/mm2 more centrally. The distribution is rather flat with no local extremes. Consistent with the low rod proportion in tree shrew, the rod bipolar cell density is low compared to the rod-dominated cat retina for example (36,000-47,000 rod bipolar cells/mm2). Rod-to-rod bipolar cell ratios in the tree shrew retina range from smaller than 1 to about 7, and thus are also lower than in cat.


1995 ◽  
Vol 74 (2) ◽  
pp. 856-875 ◽  
Author(s):  
M. A. Gillette ◽  
R. F. Dacheux

1. Voltage- and ligand-gated currents were recorded from solitary rabbit rod bipolar cells using the whole cell patch-clamp technique. The rod bipolar cell forms a single, stereotypical physiological and morphological class of cells that was easily identified from other neurons and support cells after enzymatic and mechanical dissociation from isolated retina. Protein kinase C immunoreactivity confirmed the validity of using a purely morphological identification of this cell type. 2. Voltage steps in 15-mV increments from a holding potential of -45 mV elicited a large outward current activated near -30 mV. These voltage-gated currents were eliminated by using equimolar substitutions of Cs+ and tetraethylammonium+ for K+ in the pipette, indicating that they represent a mixture of K+ currents. 3. The putative inhibitory neurotransmitters gamma-aminobutyric acid (GABA) and glycine activated inward Cl- currents when pressure-applied from pipettes placed near the axon terminals of rod bipolar cells, which were voltage-clamped at -45 mV. With changes in intracellular or extracellular Cl- concentration, the reversal potential of these ligand-gated currents changed as predicted by the Nernst equation for Cl- activity. The dose-response curves for GABA and glycine were sigmoidal with saturating concentrations of 100 and 300 microM, respectively. 4. GABA-activated currents were 1) reversibly reduced by the allosteric inhibitor picrotoxin and the competitive antagonist bicuculline; 2) potentiated by the benzodiazepine diazepam and the barbiturate barbital sodium; and 3) indistinguishable from muscimol-activated currents. There was no response to the GABAB agonist baclofen. Collectively, these data strongly suggest that the GABA-activated currents in rabbit rod bipolar cells are mediated by the GABAA receptor. This is similar to the GABA-activated currents in other mammalian rod bipolar cells. 5. Application of the conformationally restricted GABA analogue cis-4-aminocrotonic acid (CACA) failed to elicit a response, whereas the conformationally extended GABA analogue trans-4-aminocrotonic acid (TACA) elicited a response similar to that of GABA. Although bicuculline appeared to suppress the GABA-activated current slightly more than the TACA-activated current (not significant using Student's t-distribution), GABA- and TACA-activated currents were equally suppressed by picrotoxin and equally enhanced by diazepam and barbital sodium. These data, coupled with the inefficacy of CACA, argue against the existence of a GABAC-type channel in the rod bipolar cell of the rabbit and suggest that GABA and TACA were activating the same GABAA receptor-channel complex.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document