Potentiation of NMDA Receptor-Mediated Responses by Dynorphin at Low Extracellular Glycine Concentrations

1997 ◽  
Vol 78 (2) ◽  
pp. 582-590 ◽  
Author(s):  
Li Zhang ◽  
Robert W. Peoples ◽  
Murat Oz ◽  
Judith Harvey-White ◽  
Forrest F. Weight ◽  
...  

Zhang, Li, Robert W. Peoples, Murat Oz, Judith Harvey-White, Forrest F. Weight, and Ulrike Brauneis. Potentiation of NMDA receptor-mediated responses by dynorphin at low extracellular glycine concentrations. J. Neurophysiol. 78: 582–590, 1997. The effect of dynorphin A(1–13) on N-methyl-d-aspartate (NMDA)-activated currents was investigated in the presence of low extracellular glycine concentrations in Xenopus oocytes expressing recombinant heteromeric NMDA receptors and in cultured hippocampal neurons with the use of voltage-clamp techniques. At an extracellular added glycine concentration of 100 nM, dynorphin A(1–13) (10 μM) greatly increased the amplitude of NMDA-activated currents for all heteromeric subunit combinations tested; on average, the potentiation was: ε1/ζ1, 3,377 ± 1,416% (mean ± SE); ε2/ζ1, 1,897 ± 893%; ε3/ζ1, 4,356 ± 846%; and ε4/ζ1, 1,783 ± 503%. Potentiation of NMDA-activated current by dynorphin A(1–13) was concentration dependent between 0.1 and 10 μM dynorphin A(1–13), with a half-maximal concentration value of 2.77 μM and an apparent Hill coefficient of 2.53, for ε2/ζ1 subunits at 100 nM added extracellular glycine. Percentage potentiation by dynorphin A(1–13) was maximal at the lowest glycine concentrations tested (0.01 and 0.1 μM), and decreased with increasing glycine concentration. No significant potentiation was observed at glycine concentrations >0.1 μM for ε1/ζ1, ε2/ζ1, and ε4/ζ1 subunits, or at >1 μM for ε3/ζ1 subunits. Potentiation of NMDA-activated currents by dynorphin A(1–13) was not inhibited by 1 μM of the κ-opioid receptor antagonist nor-binaltorphimine, and potentiation was not observed with 10 μM of the κ-opioid receptor agonist trans-3,4-dichloro- N-methyl- N-[2-(1-pyrrolidinyl)-cyclohexyl]benzene-acetamide. Potentiation of NMDA-activated current by dynorphin A(1–13) was inhibited by the glycine antagonist kynurenic acid (50 μM). NMDA-activated current was also potentiated at low glycine concentrations by 10 μM dynorphin A(2–13) or (3–13), both of which have a glycine as the first amino acid, but not by 10 μM dynorphin A(4–13), which does not have glycine as an amino acid. In hippocampal neurons, 10 μM dynorphin A(1–13) or (2–13) potentiated steady-state NMDA-activated current in the absence of added extracellular glycine. The extracellular free glycine concentration, determined by high-performance liquid chromatography, was between 26 and 36 nM for the bathing solution in presence or absence of 10 μM dynorphin A(1–13), (2–13), (3–13), or (4–13), and did not differ significantly among these solutions. The observations are consistent with the potentiation of NMDA-activated current at low extracellular glycine concentrations resulting from an interaction of the glycine amino acids in dynorphin A(1–13) with the glycine coagonist site on the NMDA receptor. Because dynorphin A is an endogenous peptide that can be coreleased with glutamate at glutamatergic synapses, the potentiation of NMDA receptor-mediated responses could be an important physiological regulator of NMDA receptor function at these synapses.

Endocrinology ◽  
2019 ◽  
Vol 161 (2) ◽  
Author(s):  
Tyler Bland ◽  
Mingyan Zhu ◽  
Crystal Dillon ◽  
Gulcan Semra Sahin ◽  
Jose Luis Rodriguez-Llamas ◽  
...  

Abstract Activation of the leptin receptor, LepRb, by the adipocytokine/neurotrophic factor leptin in the central nervous system has procognitive and antidepressive effects. Leptin has been shown to increase glutamatergic synaptogenesis in multiple brain regions. In contrast, mice that have a mutation in the LepRb gene show abnormal synapse development in the hippocampus as well as deficits in cognition and increased depressive-like symptoms. Leptin increases glutamatergic synaptogenesis, in part, through enhancement of N-methyl-D-aspartic acid (NMDA) receptor function; yet the underlying signaling pathway is not known. In this study, we examine how leptin regulates surface expression of NR2B-containing NMDA receptors in hippocampal neurons. Leptin stimulation increases NR2BY1472 phosphorylation, which is inhibited by the Src family kinase inhibitor, PP1. Moreover, we show that Fyn, a member of the Src family kinases, is required for leptin-stimulated NR2BY1472 phosphorylation. Furthermore, inhibiting Y1472 phosphorylation with either a dominant negative Fyn mutant or an NR2B mutant that lacks the phosphorylation site (NR2BY1472F) blocks leptin-stimulated synaptogenesis. Additionally, we show that LepRb forms a complex with NR2B and Fyn. Taken together, these findings expand our knowledge of the LepRb interactome and the mechanisms by which leptin stimulates glutamatergic synaptogenesis in the developing hippocampus. Comprehending these mechanisms is key for understanding dendritic spine development and synaptogenesis, alterations of which are associated with many neurological disorders.


Neuropeptides ◽  
2021 ◽  
pp. 102182
Author(s):  
Mengying Chen ◽  
Xiaodong Zhang ◽  
Jiaxin Fan ◽  
Hong Sun ◽  
Qingling Yao ◽  
...  

1987 ◽  
Vol 58 (2) ◽  
pp. 251-266 ◽  
Author(s):  
J. F. MacDonald ◽  
Z. Miljkovic ◽  
P. Pennefather

1. Mouse hippocampal neurons grown in dissociated cell culture were patch clamped using a whole cell voltage clamp (discontinuous switching clamp) technique. The currents generated by pressure applications of excitatory amino acids were studied over a wide range of holding potentials, and current-voltage curves were plotted. Excitatory amino acids that activated the N-methyl-D-aspartic acid (NMDA) receptor demonstrated some degree of desensitization with repeated applications, whereas the currents observed in response to kainic acid (KAI) did not. Desensitization could be minimized by keeping the frequency of application sufficiently low (i.e., less than 0.1 Hz). 2. The short-acting dissociative anaesthetic, ketamine (2–50 microM), selectively blocked L-aspartic acid (L-Asp), NMDA, and L-glutamic acid (L-Glu) currents while sparing those in response to KAI. Therefore, ketamine is a relatively selective blocker of the NMDA response versus that (those) activated by KAI. 3. The block by ketamine of excitatory amino acid currents is highly voltage dependent. Concentrations of ketamine that had little effect on outward current responses at depolarized potentials were quite effective at blocking inward current responses at hyperpolarized potentials. In contrast, DL-2-amino-5-phosphonovaleric acid (APV) was equally effective at blocking both inward and outward currents (voltage independent). The voltage dependence of ketamine (a positively charged molecule) could be accounted for if ketamine blocked the NMDA response by binding to a site that experienced 55% of the membrane field. 4. In the presence of ketamine, peak inward currents evoked by repeated applications of NMDA, L-Asp, or L-Glu progressively declined to a steady-state level of block (use-dependent block). This decrement occurred at frequencies much lower than those that were employed to demonstrate desensitization (in the absence of ketamine). Moving the membrane potential to depolarized values did not, in itself, relieve the ketamine block. However, if the appropriate excitatory amino acid (L-Asp, NMDA, L-Glu) was applied during the period of depolarization, a relief of the block could be demonstrated. No recovery from the blockade occurred with periods of rest (no amino acid application) as long as 5 min. Furthermore, no recovery was observed even when ketamine was washed out of the bathing solution until the appropriate agonist was applied. Thus recovery from blockade, like development of blockade, was use dependent.(ABSTRACT TRUNCATED AT 400 WORDS)


Synapse ◽  
2015 ◽  
Vol 70 (1) ◽  
pp. 33-39 ◽  
Author(s):  
C. Thetford Smothers ◽  
Karen K. Szumlinski ◽  
Paul F. Worley ◽  
John J. Woodward

2011 ◽  
Vol 61 (5-6) ◽  
pp. 1001-1015 ◽  
Author(s):  
Christine A. Strick ◽  
Cheryl Li ◽  
Liam Scott ◽  
Brian Harvey ◽  
Mihály Hajós ◽  
...  

1998 ◽  
Vol 10 (6) ◽  
pp. 2192-2198 ◽  
Author(s):  
Shigeo Okabe ◽  
Carlos Vicario-Abejón ◽  
Menahem Segal ◽  
Ronald D. G. McKay

2018 ◽  
Author(s):  
Akira Masuda ◽  
Chie Sano ◽  
Qi Zhang ◽  
Hiromichi Goto ◽  
Thomas J. McHugh ◽  
...  

SummaryThe hippocampus, a region critical for memory and spatial navigation, has been implicated in delay discounting, the decline in subjective reward value when a delay is imposed. However, how delay discounting is encoded in the hippocampus is poorly understood. Here we recorded from the hippocampal CA1 region of mice performing a delay-discounting decision-making task, where delay lengths and reward amounts were changed across sessions, and identified subpopulations of neurons in CA1 which increased or decreased their firing rate during long delays. The activity of both delay-active and -suppressive cells reflected delay length, reward amount, and arm position, however manipulating reward amount differentially impacted the two populations, suggesting distinct roles in the valuation process. Further, genetic deletion of NMDA receptor in hippocampal pyramidal cells impaired delay-discount behavior and diminished delay-dependent activity in CA1. Our results suggest that distinct subclasses of hippocampal neurons concertedly support delay-discounting decision in a manner dependent on NMDA receptor function.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Akira Masuda ◽  
Chie Sano ◽  
Qi Zhang ◽  
Hiromichi Goto ◽  
Thomas J McHugh ◽  
...  

The hippocampus, a region critical for memory and spatial navigation, has been implicated in delay discounting, the decline in subjective reward value when a delay is imposed. However, how delay information is encoded in the hippocampus is poorly understood. Here, we recorded from CA1 of mice performing a delay-discounting decision-making task, where delay lengths, delay positions, and reward amounts were changed across sessions, and identified subpopulations of CA1 neurons that increased or decreased their firing rate during long delays. The activity of both delay-active and -suppressed cells reflected delay length, delay position, and reward amount; but manipulating reward amount differentially impacted the two populations, suggesting distinct roles in the valuation process. Further, genetic deletion of the N-methyl-D-aspartate (NMDA) receptor in hippocampal pyramidal cells impaired delay-discount behavior and diminished delay-dependent activity in CA1. Our results suggest that distinct subclasses of hippocampal neurons concertedly support delay-discounting decisions in a manner that is dependent on NMDA receptor function.


1993 ◽  
Vol 70 (1) ◽  
pp. 8-19 ◽  
Author(s):  
Z. J. Zhou ◽  
G. L. Fain ◽  
J. E. Dowling

1. The distribution and the properties of receptors to the inhibitory amino acid glycine (GLY) and the excitatory amino acid glutamate (GLU) and its analogues kainate (KA), quisqualate (QUIS), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and N-methyl-D-aspartate (NMDA), were studied with whole-cell and outside-out patch-clamp techniques on all four types of horizontal cells isolated from the retina of white perch. 2. Glycine at concentrations above 30 microM evoked whole-cell current responses from two types of horizontal cells (H2 and H4). The other two types of horizontal cells (H1 and H3) were unresponsive to GLY (30 microM-3 mM). 3. Responses elicited by GLY from H2 and H4 cells were similar, consisting of inward currents that desensitized with a half-decay time of 0.5-2 s at glycine concentrations between 100 and 500 microM. GLY-activated currents were inhibited by the glycine receptor antagonist strychnine (STRYCH). Current responses evoked by GLY reversed at the Cl- equilibrium potential. 4. Dose-response analysis of peak currents induced by GLY revealed a Hill coefficient of 2.0 +/- 0.1 (mean +/- SD, n = 3) and an median effective concentration (EC50) of 85 +/- 2 microM (n = 3). 5. Single glycine receptor channels recorded from outside-out patches had a main-state conductance of 47 +/- 4 pS (n = 3). 6. Every type of horizontal cell from the white perch responded to GLU, KA, QUIS, and AMPA but none responded to exogenously applied NMDA (200 microM) or NMDA (200 microM) + GLY (1 microM) in a Mg+2-free bathing solution. 7. The ratio of the amplitude of responses to GLU, KA, QUIS, and AMPA remained nearly constant among all the horizontal cells tested, suggesting there might be only a single population of non-NMDA receptors on these cells. 8. QUIS and KA both elicited responses from the horizontal cells. When applied together with KA, QUIS competitively antagonized the responses of horizontal cells to KA. 9. The results demonstrated the existence of an inhomogeneous distribution of strychnine-sensitive glycine receptors and a homogeneous distribution of non-NMDA type glutamate receptors among the four types of white perch horizontal cells.


Sign in / Sign up

Export Citation Format

Share Document