Long-Term Expression of Two Interacting Motor Pattern-Generating Networks in the Stomatogastric System of Freely Behaving Lobster

1998 ◽  
Vol 79 (3) ◽  
pp. 1396-1408 ◽  
Author(s):  
Stefan Clemens ◽  
Denis Combes ◽  
Pierre Meyrand ◽  
John Simmers

Clemens, Stefan, Denis Combes, Pierre Meyrand, and John Simmers. Long-term expression of two interacting motor pattern-generating networks in the stomatogastric system of freely behaving lobster. J. Neurophysiol. 79: 1396–1408, 1998. Rhythmic movements of the gastric mill and pyloric regions of the crustacean foregut are controlled by two stomatogastric neuronal networks that have been intensively studied in vitro. By using electromyographic recordings from the European lobster, Homarus gammarus, we have monitored simultaneously the motor activity of pyloric and gastric mill muscles for ≤3 mo in intact and freely behaving animals. Both pyloric and gastric mill networks are almost continuously active in vivo regardless of the presence of food. In unfed resting animals kept under “natural-like” conditions, the pyloric network expresses the typical triphasic pattern seen in vitro but at considerably slower cycle periods (2.5–3.5 s instead of 1–1.5 s). Gastric mill activity occurs at mean cycle periods of 20–50 s compared with 5–10 s in vitro but may suddenly stop for up to tens of minutes, then restart without any apparent behavioral reason. When conjointly active, the two networks express a strict coupling that involves certain but not all motor neurons of the pyloric network. The posterior pyloric constrictor muscles, innervated by a total of 8 pyloric (PY) motor neurons, are influenced by the onset of each gastric mill medial gastric/lateral gastric(MG/LG) neuron powerstroke burst, and for one cycle, PY neuron bursts may attain >300% of their mean duration. However, the duration of activity in the lateral pyloric constrictor muscle, innervated by the unique lateral pyloric (LP) motor neuron, remains unaffected by this perturbation. During this period after gastric perturbation, LP neuron and PY neurons thus express opposite burst-to-period relationships in that LP neuron burst duration is independent of the ongoing cycle period, whereas PY neuron burst duration changes with period length. In vitro the same type of gastro-pyloric interaction is observed, indicating that it is not dependent on sensory inputs. Moreover, this interaction is intrinsic to the stomatogastric ganglion itself because the relationship between the two networks persists after suppression of descending inputs to the ganglion. Intracellular recordings reveal that thisgastro-pyloric interaction originates from the gastric MG and LG neurons of the gastric network, which inhibit the pyloric pacemaker ensemble. As a consequence, the pyloric PY neurons, which are inhibited by the pyloric dilator (PD) neurons of the pyloric pacemaker group, extend their activity during the time that PD neuron is held silent. Moreover, there is evidence for a pyloro-gastric interaction, apparently rectifying, from the pyloric pacemakers back to the gastric MG/LG neuron group.

2011 ◽  
Vol 105 (4) ◽  
pp. 1671-1680 ◽  
Author(s):  
Ulrike B. S. Hedrich ◽  
Florian Diehl ◽  
Wolfgang Stein

Neuronal release of modulatory substances provides motor pattern generating circuits with a high degree of flexibility. In vitro studies have characterized the actions of modulatory projection neurons in great detail in the stomatogastric nervous system, a model system for neuromodulatory influences on central pattern generators. Less is known about the activities and actions of modulatory neurons in fully functional and richly modulated network settings, i.e., in intact animals. It is also unknown whether their activities contribute to the motor patterns in different behavioral conditions. Here, we show for the first time the activity and effects of the well-characterized modulatory projection neuron 1 (MCN1) in vivo and compare them to in vitro conditions. MCN1 was always spontaneously active, typically in a rhythmic fashion with its firing being interrupted by ascending inhibitions from the pyloric motor circuit. Its activity contributed to pyloric motor activity, because 1) the cycle period of the motor pattern correlated with MCN1 firing frequency and 2) stimulating MCN1 shortened the cycle period while 3) lesioning of the MCN1 axon reduced motor activity. In addition, gastric mill motor activity was elicited for the duration of the stimulation. Chemosensory stimulation of the antennae moved MCN1 away from baseline activity by increasing its firing frequency. Following this increase, a gastric mill rhythm was elicited and the pyloric cycle period decreased. Lesioning the MCN1 axon prevented these effects. Thus modulatory projection neurons such as MCN1 can control the motor output in vivo, and they participate in the processing of exteroceptive sensory information in behaviorally relevant conditions.


1989 ◽  
Vol 61 (4) ◽  
pp. 833-844 ◽  
Author(s):  
P. S. Dickinson ◽  
E. Marder

1. The cardiac sac motor pattern consists of slow and irregular impulse bursts in the motor neurons [cardiac sac dilator 1 and 2 (CD1 and CD2)] that innervate the dilator muscles of the cardiac sac region of the crustacean foregut. 2. The effects of the peptides, proctolin and red pigment-concentrating hormone (RPCH), on the cardiac sac motor patterns produced by in vitro preparations of the combined stomatogastric nervous system [the stomatogastric ganglion (STG), the paired commissural ganglia (CGs), and the oesophageal ganglion (OG)] were studied. 3. Bath applications of either RPCH or proctolin activated the cardiac sac motor pattern when this motor pattern was not already active and increased the frequency of the cardiac sac motor pattern in slowly active preparations. 4. The somata of CD1 and CD2 are located in the esophageal and stomatogastric ganglia, respectively. Both neurons project to all four of the ganglia of the stomatogastric nervous system. RPCH elicited cardiac sac motor patterns when applied to any region of the stomatogastric nervous system, suggesting a distributed pattern generating network with multiple sites of modulation. 5. The anterior median (AM) neuron innervates the constrictor muscles of the cardiac sac. The AM usually functions as a part of the gastric mill pattern generator. However, when the cardiac sac is activated by RPCH applied to the stomatogastric ganglion, the AM neuron becomes active in antiphase with the cardiac sac dilator bursts. This converts the cardiac sac motor pattern from a one-phase rhythm to a two-phase rhythm. 6. These data show that a neuropeptide can cause a neuronal element to switch from being solely a component of one neuronal circuit to functioning in a second one as well. This example shows that peptidergic "reconfiguration" of neuronal networks can produce substantial changes in the behavior of associated neurons.


1998 ◽  
Vol 79 (5) ◽  
pp. 2316-2328 ◽  
Author(s):  
C. S. Green ◽  
S. R. Soffe

Green, C. S. and S. R. Soffe. Roles of ascending inhibition during two rhythmic motor patterns in Xenopus tadpoles. J. Neurophysiol. 79: 2316–2328, 1998. We have investigated the effects of ascending inhibitory pathways on two centrally generated rhythmic motor patterns in a simple vertebrate model, the young Xenopus tadpole. Tadpoles swim when touched, but when grasped respond with slower, stronger struggling movements during which the longitudinal pattern of motor activity is reversed. Surgical spinal cord transection to remove all ascending connections originating caudal to the transection (in tadpoles immobilized in α-bungarotoxin) did not affect “fictive” swimming generated more rostrally. In contrast, cycle period and burst duration both significantly increased during fictive struggling. Increases were progressively larger with more rostral transection. Blocking caudal activity with the anesthetic MS222 (pharmacological transection) produced equivalent but reversible effects. Reducing crossed-ascending inhibition selectively, either by midsagittal spinal cord division or rostral cord hemisection (1-sided transection) mimicked the effects of transection. Like transection, both operations increased cycle period and burst duration during struggling but did not affect swimming. The changes during struggling were larger with more rostral hemisection. Reducing crossed-ascending inhibition by spinal hemisection also increased the rostrocaudal longitudinal delay during swimming, and the caudorostral delay during struggling. Weakening inhibition globally with low concentrations of the glycine antagonist strychnine (10–100 nM) did not alter swimming cycle period, burst duration, or longitudinal delay. However, strychnine at 10–60 nM decreased cycle period during struggling. It also increased burst duration in some cases, although burst duration increased as a proportion of cycle period in all cases. Strychnine reduced longitudinal delay during struggling, making rostral and caudal activity more synchronous. At 100 nM, struggling was totally disrupted. By combining our results with a detailed knowledge of tadpole spinal cord anatomy, we conclude that inhibition mediated by the crossed-ascending axons of characterized, glycinergic, commissural interneurons has a major influence on the struggling motor pattern compared with swimming. We suggest that this difference is a consequence of the larger, reversed longitudinal delay and the extended burst duration during struggling compared with swimming.


1993 ◽  
Vol 69 (5) ◽  
pp. 1583-1595 ◽  
Author(s):  
S. Ryckebusch ◽  
G. Laurent

1. When an isolated metathoracic ganglion of the locust was superfused with the muscarinic cholinergic agonist pilocarpine, rhythmic activity was induced in leg motor neurons. The frequency of this induced rhythm increased approximately linearly from 0 to 0.2 Hz with concentrations of pilocarpine from 10(-5) to 10(-4) M. Rhythmic activity evoked by pilocarpine could be completely and reversibly blocked by 3 x 10(-5) M atropine, but was unaffected by 10(-4) M d-tubocurarine. 2. For each hemiganglion, the observed rhythm was characterized by two main phases: a levator phase, during which the anterior coxal rotator, levators of the trochanter, flexors of the tibia, and common inhibitory motor neurons were active; and a depressor phase, during which depressors of the trochanter, extensors of the tibia, and depressors of the tarsus were active. Activity in depressors of the trochanter followed the activity of the levators of the trochanter with a short, constant interburst latency. Activity in the levator of the tarsus spanned both phases. 3. The levator phase was short compared with the period (0.5-2 s, or 10-20% of the period) and did not depend on the period. The interval between the end of a levator burst and the beginning of the following one thus increased with cycle period. The depressor phase was more variable, and was usually shorter than the interval between successive levator bursts. 4. Motor neurons in a same pool often received common discrete synaptic potentials (e.g., levators of trochanter or extensors of tibia), suggesting common drive during the rhythm. Coactive motor neurons on opposite sides (such as left trochanteral depressors and right trochanteral levators), however, did not share obvious common postsynaptic potentials. Depolarization of a pool of motor neurons during its phase of activity was generally accompanied by hyperpolarization of its antagonist(s) on the same side. 5. Rhythmic activity was generally evoked in both hemiganglia of the metathoracic ganglion, but the intrinsic frequencies of the rhythms on the left and right were usually different. The activity of the levators of the trochanter on one side, however, was strongly coupled to that of the depressors of the trochanter on the other side. 6. The locomotory rhythm was weakly coupled to the ventilatory rhythm such that trochanteral levator activity on either side never occurred during the phase of spiracle opener activity corresponding to inspiration. 7. The rhythmic activity observed in vitro bears many similarities to patterns of neural and myographic activity recorded during walking. The similarities and differences are discussed.


1985 ◽  
Vol 114 (1) ◽  
pp. 71-98
Author(s):  
D. F. Russell

The burst pattern of the gastric mill rhythm was studied by varying its cycle period in in vitro preparations comprising the stomatogastric (STG), oesophageal and (paired) commissural ganglia. Reset tests using intracellular polarization of identified STG neurones showed that the CI, LC, GP and GM cells can all strongly affect the cycle period, and therefore apparently play a role in generating the gastric rhythm. Variation in the cycle period could be obtained by: (i) cutting certain input nerves; (ii) relative coordination between the gastric and oesophageal rhythms; or (iii) intracellular polarization of identified STG cells, especially the LC motoneurone. Variation in the cycle period by any of these means showed that the gastric pattern (in such preparations) comprises two basic alternating phases: a variable-duration ‘powerstroke’ and a constant-duration ‘returnstroke’. The powerstroke is taken to include bursts in the LC, GP and GM motoneurones (since they evoke closing of the gastric mill teeth and mastication of food), along with the interburst intervals of the other cells. The durations of all these events co-varies over a large range, as a linear function of the cycle period. The activity level of neurones bursting during the powerstroke is directly proportional to their burst length, and hence appears to be a basic parameter affecting the cycle period. The returnstroke is taken to include bursts in the CP, AM and LG motoneurones (since they evoke opening and resetting of the gastric mill teeth), along with the interburst intervals of the powerstroke cells. All these events tended to assume a fixed duration. The two-part gastric mill pattern can be analogized to other two-part rhythms, e.g. for terrestrial locomotion, in which the load-bearing phase has a variable duration and accounts for most of the variation in the cycle period whereas the unloaded phase tends to assume a constant duration.


2020 ◽  
Vol 124 (3) ◽  
pp. 914-929
Author(s):  
Angela Wenning ◽  
Young Rim Chang ◽  
Brian J. Norris ◽  
Ronald L. Calabrese

Moving blood through the segmented heart tubes of leeches requires sequential constrictions driven by motor neurons controlled by a central pattern generator. In a single heart segment, we varied stimuli to explore the neuromuscular transform. Decreasing the cycle period, e.g., to increase volume pumped over time, without altering motor burst duration and intraburst spike frequency shortens relaxation time and decreases amplitude. The likely strategy to preserve constriction amplitude is to shorten burst duration while increasing spike frequency.


Cells ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1127
Author(s):  
Alessandro Cutarelli ◽  
Vladimir A. Martínez-Rojas ◽  
Alice Tata ◽  
Ingrid Battistella ◽  
Daniela Rossi ◽  
...  

Methods for the conversion of human induced pluripotent stem cells (hiPSCs) into motor neurons (MNs) have opened to the generation of patient-derived in vitro systems that can be exploited for MN disease modelling. However, the lack of simplified and consistent protocols and the fact that hiPSC-derived MNs are often functionally immature yet limit the opportunity to fully take advantage of this technology, especially in research aimed at revealing the disease phenotypes that are manifested in functionally mature cells. In this study, we present a robust, optimized monolayer procedure to rapidly convert hiPSCs into enriched populations of motor neuron progenitor cells (MNPCs) that can be further amplified to produce a large number of cells to cover many experimental needs. These MNPCs can be efficiently differentiated towards mature MNs exhibiting functional electrical and pharmacological neuronal properties. Finally, we report that MN cultures can be long-term maintained, thus offering the opportunity to study degenerative phenomena associated with pathologies involving MNs and their functional, networked activity. These results indicate that our optimized procedure enables the efficient and robust generation of large quantities of MNPCs and functional MNs, providing a valid tool for MNs disease modelling and for drug discovery applications.


2021 ◽  
Author(s):  
Divya Lodha ◽  
Jamuna R. Subramaniam

Abstract In various neurological and neurodegenerative diseases (ND), motor neurons (MN) of the spinal cord are affected leading to movement impairments. The ND, Amyotrophic Lateral Sclerosis (ALS), is caused due to MN degeneration. ALS afflicts athletes and other major sports personalities, who generally consume fructose enriched sports drinks. Recently, we have reported that high fructose (F5%) impairs the metabolic activity in the NSC-34, MN cell line and reduces the healthspan of C. elegans. But how fructose impacts the MNs either in vitro or in vivo in the long term is not understood. Here we report, to our surprise, that high fructose (F5%) treatment of NSC-34 leads to differentiation of 1-2% of cells with progressive neurite extension. They could be maintained for 80 days in vitro with 5% CO2 and O2 at 18.8%. On the contrary, 5% fructose significantly reduced cell viability by ~85% and inhibited cell proliferation by Day10. Nuclear staining displayed multiple nuclei in the cells indicative of cytokinesis inhibition which led to the lack of cell proliferation. Further, F5% significantly increased ROS levels (^~34%), the potential cause for reduced viability. In addition, no induction of expression of the master oxidative stress response regulator, the transcription factor, nrf-2, or the downstream effector, sod1, was evident. Despite the adverse effects, in the absence of any, F5% is a potential strategy to maintain at least a small percentage of MNs for a long time, ~45 days in vitro, which also reinforces the Redox-Cell death versus cell survival conundrum.


2002 ◽  
Vol 87 (5) ◽  
pp. 2372-2384 ◽  
Author(s):  
Jeff B. Thuma ◽  
Scott L. Hooper

It has long been known that gastric mill network activity (cycle period 5–10 s) alters pyloric network output (cycle period approximately 1 s), but these effects have not been quantified. Many pyloric muscles extract gastric mill timed variations in pyloric motor neuron firing, and consequently produce gastric mill timed movements even though no gastric mill neurons innervate them. Determining pyloric behavior therefore requires detailed description of gastric mill effects on pyloric neural output. Pyloric muscle activity correlates well with motor neuron overall spike frequency (OSF, burst spike number divided by cycle period). We quantified OSF variation of all pyloric neurons as a function of time into the gastric mill cycle [as measured from the beginning of Gastric Mill (GM) neuron bursts] in the lobster, Panulirus interruptus. No repeating pattern within individual gastric mill cycles of Lateral Pyloric (LP) and Ventricular Dilator (VD) neuron OSF was visually apparent. Averaged data showed that VD and LP neuron OSF decreased (approximately 0.5 and 1.5 Hz, respectively) at the beginning of each gastric mill cycle. Visually apparent patterns of OSF waxing and waning within each gastric mill cycle were present for the Inferior Cardiac (IC), Pyloric Dilator (PD), and Pyloric (PY) neurons. However, when averaged as a function of phase or delay in the gastric mill cycle, the average changes were smaller than those in individual gastric mill cycles because when the OSF variations occurred varied considerably in different gastric mill cycles. We therefore used a “pattern-based” analysis in which an identifying characteristic of each neuron's repeating OSF variation pattern was defined as pattern pyloric cycle zero. The pyloric cycles in each repetition of the OSF variation pattern were numbered relative to the zero cycle, and averaged to create an average OSF variation profile. The zero cycle delays relative to GM neuron burst beginning were then averaged to determine when in the gastric mill cycle the profile occurred. This technique preserved the full extent of pyloric neuron OSF changes. Maximum PY neuron OSF occurred within the GM neuron burst, whereas maximum IC and PD neuron OSF occurred during the GM neuron interburst interval. Despite these changes, pyloric cycling did not phase lock with gastric mill activity, nor were an integer number of pyloric cycles present in each gastric mill cycle. In addition to providing data necessary to predict pyloric movement, this work shows how pattern-based analysis can successfully quantify interactions between nonphase-locked networks.


Sign in / Sign up

Export Citation Format

Share Document