Developmental Changes in Membrane Properties of Chemoreceptor Afferent Neurons of the Rat Petrosal Ganglia

1999 ◽  
Vol 82 (1) ◽  
pp. 209-215 ◽  
Author(s):  
David F. Donnelly

Carotid body chemoreceptors increase their responsiveness to hypoxia in the postnatal period, but the mechanism for this increase is unresolved. The purpose of the present study was to examine developmental changes in cellular characteristics of chemoreceptor afferent neurons in the petrosal ganglia with the underlying hypothesis that developmental changes occur and may account for the developmental increase in chemoreceptor responsiveness. Chemoreceptor complexes (carotid body, sinus nerve, glossopharyngeal nerve, and petrosal ganglia) were harvested from rats, aged 3–40 days, and intracellular recordings were obtained from petrosal ganglion neurons using sharp electrode impalement. All chemoreceptor neurons across ages were C fibers with conduction velocities <1 m/s and generated repetitive action potentials with depolarization. Resting membrane potential was −61.3 ± 0.9 (SE) mV ( n = 78) and input resistance was 108 ± 6 MΩ and did not significantly change with age. Cell capacitance was 32.4 ± 1.7 pF and did not change with age. Rheobase averaged 0.21 ± 0.02 nA and slightly increased with age. Action potentials were followed by an afterhyperpolarization of 12.4 ± 0.6 mV and time constant 6.9 ± 0.5 ms; only the time constant decreased with age. These results, obtained in rat, demonstrate electrophysiologic characteristics which differ substantially from that previously described in cat chemoreceptor neurons. In general developmental changes in cell characteristics are small and are unlikely to account for the developmental increase in chemoreceptor responsiveness with age.

2002 ◽  
Vol 87 (5) ◽  
pp. 2398-2407 ◽  
Author(s):  
Carmen Cabanes ◽  
Mikel López de Armentia ◽  
Félix Viana ◽  
Carlos Belmonte

Intracellular recordings from neurons in the mouse trigeminal ganglion (TG) in vitro were used to characterize changes in membrane properties that take place from early postnatal stages (P0–P7) to adulthood (>P21). All neonatal TG neurons had uniformly slow conduction velocities, whereas adult neurons could be separated according to their conduction velocity into Aδ and C neurons. Based on the presence or absence of a marked inflection or hump in the repolarization phase of the action potential (AP), neonatal neurons were divided into S- (slow) and F-type (fast) neurons. Their passive and subthreshold properties (resting membrane potential, input resistance, membrane capacitance, and inward rectification) were nearly identical, but they showed marked differences in AP amplitude, AP overshoot, AP duration, rate of AP depolarization, rate of AP repolarization, and afterhyperpolarization (AHP) duration. Adult TG neurons also segregated into S- and F-type groups. Differences in their mean AP amplitude, AP overshoot, AP duration, rate of AP depolarization, rate of AP repolarization, and AHP duration were also prominent. In addition, axons of 90% of F-type neurons and 60% of S-type neurons became faster conducting in their central and peripheral branch, suggestive of axonal myelination. The proportion of S- and F-type neurons did not vary during postnatal development, suggesting that these phenotypes were established early in development. Membrane properties of both types of TG neurons evolved differently during postnatal development. The nature of many of these changes was linked to the process of myelination. Thus myelination was accompanied by a decrease in AP duration, input resistance ( R in), and increase in membrane capacitance (C). These properties remained constant in unmyelinated neurons (both F- and S-type). In adult TG, all F-type neurons with inward rectification were also fast-conducting Aδ, suggesting that those F-type neurons showing inward rectification at birth will evolve to F-type Aδ neurons with age. The percentage of F-type neurons showing inward rectification also increased with age. Both F- and S-type neurons displayed changes in the sensitivity of the AP to reductions in extracellular Ca2+ or substitution with Co2+ during the process of maturation.


1993 ◽  
Vol 70 (3) ◽  
pp. 1264-1269 ◽  
Author(s):  
F. M. Zhou ◽  
J. J. Hablitz

1. Intracellular recordings were made in layer II-III neurons of rat neocortical slices maintained in vitro. The effect of bath application of zinc (50-300 microM) on evoked synaptic activity and passive membrane properties was examined. 2. Excitatory postsynaptic potentials (EPSPs) mediated by N-methyl-D-aspartate (NMDA) and non-NMDA receptors were recorded in response to electrical stimulation. Zinc did not affect either type of EPSP. Resting membrane potential, repetitive firing properties, and input resistance were not altered by zinc. 3. Inhibitory postsynaptic potentials (IPSPs) were enhanced after zinc application. Zinc also induced generation of large amplitude spontaneous gamma-aminobutyric acid-A (GABAA)- and GABAB-mediated IPSPs. Postsynaptic responses to iontophoretically applied GABA were unaffected. In the presence of zinc, GABAergic synaptic potentials could result in generation of action potentials. 4. Directly evoked IPSPs recorded in the presence of the excitatory amino acid receptor blockers 6-cyano-7-nitroquinoxaline-2,3-dione and 2-amino-5-phosphonovaleric acid were enhanced by zinc. Under these conditions spontaneous IPSPs with superimposed action potentials were present. Baclofen, in the presence of zinc, reduced the amplitude of evoked IPSPs. 5. These results indicate that zinc may be an endogenously occurring neuromodulator. Zinc appears to enhance GABAergic IPSPs by increasing the excitability of inhibitory interneurons, thus resulting in increased GABA release.


1985 ◽  
Vol 54 (2) ◽  
pp. 245-260 ◽  
Author(s):  
C. E. Stansfeld ◽  
D. I. Wallis

The active and passive membrane properties of rabbit nodose ganglion cells and their responsiveness to depolarizing agents have been examined in vitro. Neurons with an axonal conduction velocity of less than 3 m/s were classified as C-cells and the remainder as A-cells. Mean axonal conduction velocities of A- and C-cells were 16.4 m/s and 0.99 m/s, respectively. A-cells had action potentials of brief duration (1.16 ms), high rate of rise (385 V/s), an overshoot of 23 mV, and relatively high spike following frequency (SFF). C-cells typically had action potentials with a "humped" configuration (duration 2.51 ms), lower rate of rise (255 V/s), an overshoot of 28.6 mV, an after potential of longer duration than A-cells, and relatively low SFF. Eight of 15 A-cells whose axons conducted at less than 10 m/s had action potentials of longer duration with a humped configuration; these were termed Ah-cells. They formed about 10% of cells whose axons conducted above 2.5 m/s. The soma action potential of A-cells was blocked by tetrodotoxin (TTX), but that of 6/11 C-cells was unaffected by TTX. Typically, A-cells showed strong delayed (outward) rectification on passage of depolarizing current through the soma membrane and time-dependent (inward) rectification on inward current passage. Input resistance was thus highly sensitive to membrane potential close to rest. In C-cells, delayed rectification was not marked, and slight time-dependent rectification occurred in only 3 of 25 cells; I/V curves were normally linear over the range: resting potential to 40 mV more negative. Data on Ah-cells were incomplete, but in our sample of eight cells time-dependent rectification was absent or mild. C-cells had a higher input resistance and a higher neuronal capacitance than A-cells. In a proportion of A-cells, RN was low at resting potential (5 M omega) but increased as the membrane was hyperpolarized by a few millivolts. A-cells were depolarized by GABA but were normally unaffected by 5-HT or DMPP. C-cells were depolarized by GABA in a similar manner to A-cells but also responded strongly to 5-HT; 53/66 gave a depolarizing response, and 3/66, a hyperpolarizing response. Of C-cells, 75% gave a depolarizing response to DMPP.(ABSTRACT TRUNCATED AT 400 WORDS)


1985 ◽  
Vol 54 (6) ◽  
pp. 1375-1382 ◽  
Author(s):  
C. W. Bourque ◽  
J. C. Randle ◽  
L. P. Renaud

Intracellular recordings of rat supraoptic nucleus neurons were obtained from perfused hypothalamic explants. Individual action potentials were followed by hyperpolarizing afterpotentials (HAPs) having a mean amplitude of -7.4 +/- 0.8 mV (SD). The decay of the HAP was approximated by a single exponential function having a mean time constant of 17.5 +/- 6.1 ms. This considerably exceeded the cell time constant of the same neurons (9.5 +/- 0.8 ms), thus indicating that the ionic conductance underlying the HAP persisted briefly after each spike. The HAP had a reversal potential of -85 mV and was unaffected by intracellular Cl- ionophoresis of during exposure to elevated extracellular concentrations of Mg2+. In contrast, the peak amplitude of the HAP was proportional to the extracellular Ca2+ concentration and could be reversibly eliminated by replacing Ca2+ with Co2+, Mn2+, or EGTA in the perfusion fluid. During depolarizing current pulses, evoked action potential trains demonstrated a progressive increase in interspike intervals associated with a potentiation of successive HAPs. This spike frequency adaptation was reversibly abolished by replacing Ca2+ with Co2+, Mn2+, or EGTA. Bursts of action potentials were followed by a more prolonged afterhyperpolarization (AHP) whose magnitude was proportional to the number of impulses elicited (greater than 20 Hz) during a burst. Current injection revealed that the AHP was associated with a 20-60% decrease in input resistance and showed little voltage dependence in the range of -70 to -120 mV. The reversal potential of the AHP shifted with the extracellular concentration of K+ [( K+]o) with a mean slope of -50 mV/log[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS)


1990 ◽  
Vol 63 (2) ◽  
pp. 333-346 ◽  
Author(s):  
R. Nitzan ◽  
I. Segev ◽  
Y. Yarom

1. Intracellular recordings from neurons in the dorsal motor nucleus of the vagus (vagal motoneurons, VMs) obtained in the guinea pig brain stem slice preparation were used for both horseradish peroxidase (HRP) labeling of the neurons and for measurements of their input resistance (RN) and time constant (tau 0). Based on the physiological data and on the morphological reconstruction of the labeled cells, detailed steady-state and compartmental models of VM were built and utilized to estimate the range of membrane resistivity, membrane capacitance, and cytoplasm resistivity values (Rm, Cm, and Ri, respectively) and to explore the integrative properties of these cells. 2. VMs are relatively small cells with a simple dendritic structure. Each cell has an average of 5.3 smooth (nonspiny), short (251 microns) dendrites with a low order (2) of branching. The average soma-dendritic surface area of VMs is 9,876 microns 2. 3. Electrically, VMs show remarkably linear membrane properties in the hyperpolarizing direction; they have an average RN of 67 +/- 23 (SD) M omega and a tau 0 of 9.4 +/- 4.1 ms. Several unfavorable experimental conditions precluded the possibility of faithfully recovering ("peeling") the first equalizing time constant (tau 1) and, thereby, of estimating the electrotonic length (Lpeel) of VMs. 4. Reconciling VM morphology with the measured RN and tau 0 through the models, assuming an Ri of 70 omega.cm and a spatially uniform Rm, yielded an Rm estimate of 5,250 omega.cm2 and a Cm of 1.8 microF/cm2. Peeling theoretical transients produced by these models result in an Lpeel of 1.35. Because of marked differences in the length of dendrites within a single cell, this value is larger than the maximal cable length of the dendrites and is twice as long as their average cable length. 5. The morphological and physiological data could be matched indistinguishably well if a possible soma shunt (i.e., Rm, soma less than Rm, dend) was included in the model. Although there is no unique solution for the exact model Rm, a general conclusion regarding the integrative capabilities of VM could be drawn. As long as the model is consistent with the experimental data, the average input resistance at the dendritic terminals (RT) and the steady-state central (AFT----S) and peripheral (AFS----T) attenuation factors are essentially the same in the different models. With Ri = 70 omega.cm, we calculated RT, AFS----T, and AFT----S to be, on the average, 580 M omega, 1.1, and 13, respectively.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 90 (1) ◽  
pp. 405-414 ◽  
Author(s):  
Regula E. Egli ◽  
Danny G. Winder

The bed nucleus of the stria terminalis (BNST) is a structure uniquely positioned to integrate stress information and regulate both stress and reward systems. Consistent with this arrangement, evidence suggests that the BNST, and in particular the noradrenergic input to this structure, is a key component of affective responses to drugs of abuse. We have utilized an in vitro slice preparation from adult mice to determine synaptic and membrane properties of these cells, focusing on the dorsal and ventral subdivisions of the anterolateral BNST (dBNST and vBNST) because of the differential noradrenergic input to these two regions. We find that while resting membrane potential and input resistance are comparable between these subdivisions, excitable properties, including a low-threshold spike (LTS) likely mediated by T-type calcium channels and an Ih-dependent potential, are differentially distributed. Inhibitory and excitatory postsynaptic potentials (IPSPs and EPSPs, respectively) are readily evoked in both dBNST and vBNST. The fast IPSP is predominantly GABAA-receptor mediated and is partially blocked by the AMPA/kainate-receptor antagonist CNQX. In the presence of the GABAA-receptor antagonist picrotoxin, cells in dBNST but not vBNST are more depolarized and have a higher input resistance, suggesting tonic GABAergic inhibition of these cells. The EPSPs elicited in BNST are monosynaptic, exhibit paired pulse facilitation, and contain both an AMPA- and an N-methyl-d-aspartate (NMDA) receptor-mediated component. These data support the hypothesis that neurons of the dorsal and ventral BNST differentially integrate synaptic input, which is likely of behavioral significance. The data also suggest mechanisms by which information may flow through stress and reward circuits.


2001 ◽  
Vol 86 (2) ◽  
pp. 629-640 ◽  
Author(s):  
Muthukrishnan Renganathan ◽  
Theodore R. Cummins ◽  
Stephen G. Waxman

C-type dorsal root ganglion (DRG) neurons can generate tetrodotoxin-resistant (TTX-R) sodium-dependent action potentials. However, multiple sodium channels are expressed in these neurons, and the molecular identity of the TTX-R sodium channels that contribute to action potential production in these neurons has not been established. In this study, we used current-clamp recordings to compare action potential electrogenesis in Nav1.8 (+/+) and (−/−) small DRG neurons maintained for 2–8 h in vitro to examine the role of sodium channel Nav1.8 (α-SNS) in action potential electrogenesis. Although there was no significant difference in resting membrane potential, input resistance, current threshold, or voltage threshold in Nav1.8 (+/+) and (−/−) DRG neurons, there were significant differences in action potential electrogenesis. Most Nav1.8 (+/+) neurons generate all-or-none action potentials, whereas most of Nav1.8 (−/−) neurons produce smaller graded responses. The peak of the response was significantly reduced in Nav1.8 (−/−) neurons [31.5 ± 2.2 (SE) mV] compared with Nav1.8 (+/+) neurons (55.0 ± 4.3 mV). The maximum rise slope was 84.7 ± 11.2 mV/ms in Nav1.8 (+/+) neurons, significantly faster than in Nav1.8 (−/−) neurons where it was 47.2 ± 1.3 mV/ms. Calculations based on the action potential overshoot in Nav1.8 (+/+) and (−/−) neurons, following blockade of Ca2+ currents, indicate that Nav1.8 contributes a substantial fraction (80–90%) of the inward membrane current that flows during the rising phase of the action potential. We found that fast TTX-sensitive Na+ channels can produce all-or-none action potentials in some Nav1.8 (−/−) neurons but, presumably as a result of steady-state inactivation of these channels, electrogenesis in Nav1.8 (−/−) neurons is more sensitive to membrane depolarization than in Nav1.8 (+/+) neurons, and, in the absence of Nav1.8, is attenuated with even modest depolarization. These observations indicate that Nav1.8 contributes substantially to action potential electrogenesis in C-type DRG neurons.


Author(s):  
Christof Koch

This chapter represents somewhat of a tephnical interlude. Having introduced the reader to both simplified and more complex compartmental single neuron models, we need to revisit terrain with which we are already somewhat familiar. In the following pages we reevaluate two important concepts we defined in the first few chapters: the somatic input resistance and the neuronal time constant. For passive systems, both are simple enough variables: Rin is the change in somatic membrane potential in response to a small sustained current injection divided by the amplitude of the current injection, while τm is the slowest time constant associated with the exponential charging or discharging of the neuronal membrane in response to a current pulse or step. However, because neurons express nonstationary and nonlinear membrane conductances, the measurement and interpretation of these two variables in active structures is not as straightforward as before. Having obtained a more sophisticated understanding of these issues, we will turn toward the question of the existence of a current, voltage, or charge threshold at which a biophysical faithful model of a cell triggers action potentials. We conclude with recent work that suggests how concepts from the subthreshold domain, like the input resistance or the average membrane potential, could be extended to the case in which the cell is discharging a stream of action potentials. This chapter is mainly for the cognoscendi or for those of us that need to make sense of experimental data by comparing therp to theoretical models that usually fail to reflect reality adequately. In Sec. 3.4, we defined Kii (f) for passive cable structures as the voltage change at location i in response to a sinusoidal current injection of frequency f at the same location. Its dc component is also referred to as input resistance or Rin. Three difficulties render this definition of input resistance problematic in real cells: (1) most membranes, in particular at the soma, show voltage-dependent nonlinearities, (2) the associated ionic membrane conductances are time dependent and (3) instrumental aspects, such as the effect of the impedance of the recording electrode on Rin, add uncertainty to the measuring process.


1998 ◽  
Vol 79 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Gytis Svirskis ◽  
Jørn Hounsgaard

Svirskis, Gytis and Jørn Hounsgaard. Transmitter regulation of plateau properties in turtle motoneurons. J. Neurophysiol. 79: 45–50, 1998. In motoneurons, generation of plateau potentials is promoted by modulators that block potassium channels. In voltage-clamp experiments with triangular voltage ramp commands, we show that cis-(±)-1-aminocyclopentane-1,3-dicarboxylic acid ( cis-ACPD) and muscarine promote the generation of plateau potentials by increasing the dihydropyridine sensitive inward current, by increasing the input resistance, and by depolarizing the resting membrane potential. Type I metabotropic glutamate receptors (mGluR I) mediate the effects of cis-ACPD. Baclofen suppresses generation of plateau potentials by decreasing the dihydropyridine sensitive inward current, by decreasing the input resistance, and by hyperpolarizing the resting membrane potential. These results suggest that membrane properties of motoneurons are continuously modulated by synaptic activity in ways that may have profound effects on synaptic integration and pattern generation.


1993 ◽  
Vol 70 (5) ◽  
pp. 1975-1987 ◽  
Author(s):  
S. M. Johnson ◽  
R. B. Felder

1. Recent studies have demonstrated that the arterial baroreflex is imparied with aging and have implicated central components of the baroreflex arc in this autonomic dysfunction. Neurons in the medial portion of the nucleus tractus solitarius (mNTS) receive a major input from the arterial baroreceptors. The present study was undertaken to characterize the intrinsic membrane properties of mNTS neurons in young rats and to test the hypothesis that these properties are altered with aging. An in vitro brain stem slice preparation was used to record intracellularly from mNTS neurons; passive membrane properties, action potential characteristics, and repetitive firing properties were examined and compared. 2. Neurons in the mNTS of young (3-5 mo old) Fischer-344 rats (F-344; n = 35) had a resting membrane potential of -57 +/- 6.9 mV (mean +/- SD), a membrane time constant of 18 +/- 9.0 ms, and an input resistance of 110 +/- 60 m omega. Action potential amplitude was 81 +/- 7.5 mV with a duration at half-height of 0.83 +/- 0.15 ms. The spontaneous firing rate in 24 cells was 4.3 +/- 2.9 Hz. The amplitude and duration of the action potential afterhyperpolarization (AHP) were 6.6 +/- 3.0 mV and 64 +/- 34 ms, respectively. All neurons expressed spike frequency adaptation, action potential AHP, and posttetanic hyperpolarization. Delayed excitation and postinhibitory rebound were present in 34 and 14% of neurons tested, respectively. Neurons from adult (10-12 mo old) F-344 rats (n = 34) were similar to the young F-344 rats with respect to all of these variables. 3. Neurons from aged (21-24 mo old) F-344 (n = 32) were similar to those from young and adult rats, but there were two potentially important differences: the mean input resistance of the aged neurons was higher (170 +/- 150 M omega), with a larger proportion (46% of aged neurons vs. 20% of young neurons and 21% of adult neurons) having input resistances > 150 M omega; and there was a tendency for a smaller percentage of aged neurons (16% of aged neurons vs. 34% of young neurons and 29% of adult neurons) to express delayed excitation. 4. The potential significance of a high input resistance was tested by comparing the steady-state current-voltage (I-V) relationships and the frequency-current (f-I) relationships among low-resistance (1-100 M omega), medium-resistance (101-200 M omega).(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document