Processing of Sound Sequences in Macaque Auditory Cortex: Response Enhancement

1999 ◽  
Vol 82 (3) ◽  
pp. 1542-1559 ◽  
Author(s):  
Michael Brosch ◽  
Andreas Schulz ◽  
Henning Scheich

It is well established that the tone-evoked response of neurons in auditory cortex can be attenuated if another tone is presented several hundred milliseconds before. The present study explores in detail a complementary phenomenon in which the tone-evoked response is enhanced by a preceding tone. Action potentials from multiunit groups and single units were recorded from primary and caudomedial auditory cortical fields in lightly anesthetized macaque monkeys. Stimuli were two suprathreshold tones of 100-ms duration, presented in succession. The frequency of the first tone and the stimulus onset asynchrony (SOA) between the two tones were varied systematically, whereas the second tone was fixed. Compared with presenting the second tone in isolation, the response to the second tone was enhanced significantly when it was preceded by the first tone. This was observed in 87 of 130 multiunit groups and in 29 of 69 single units with no obvious difference between different auditory fields. Response enhancement occurred for a wide range of SOA (110–329 ms) and for a wide range of frequencies of the first tone. Most of the first tones that enhanced the response to the second tone evoked responses themselves. The stimulus, which on average produced maximal enhancement, was a pair with a SOA of 120 ms and with a frequency separation of about one octave. The frequency/SOA combinations that induced response enhancement were mostly different from the ones that induced response attenuation. Results suggest that response enhancement, in addition to response attenuation, provides a basic neural mechanism involved in the cortical processing of the temporal structure of sounds.

2013 ◽  
Vol 110 (12) ◽  
pp. 2679-2688 ◽  
Author(s):  
Paul M. Briley ◽  
Katrin Krumbholz

The neural response to a sensory stimulus tends to be more strongly reduced when the stimulus is preceded by the same, rather than a different, stimulus. This stimulus-specific adaptation (SSA) is ubiquitous across the senses. In hearing, SSA has been suggested to play a role in change detection as indexed by the mismatch negativity. This study sought to test whether SSA, measured in human auditory cortex, is caused by neural fatigue (reduction in neural responsiveness) or by sharpening of neural tuning to the adapting stimulus. For that, we measured event-related cortical potentials to pairs of pure tones with varying frequency separation and stimulus onset asynchrony (SOA). This enabled us to examine the relationship between the degree of specificity of adaptation as a function of frequency separation and the rate of decay of adaptation with increasing SOA. Using simulations of tonotopic neuron populations, we demonstrate that the fatigue model predicts independence of adaptation specificity and decay rate, whereas the sharpening model predicts interdependence. The data showed independence and thus supported the fatigue model. In a second experiment, we measured adaptation specificity after multiple presentations of the adapting stimulus. The multiple adapters produced more adaptation overall, but the effect was more specific to the adapting frequency. Within the context of the fatigue model, the observed increase in adaptation specificity could be explained by assuming a 2.5-fold increase in neural frequency selectivity. We discuss possible bottom-up and top-down mechanisms of this effect.


2002 ◽  
Vol 87 (6) ◽  
pp. 2715-2725 ◽  
Author(s):  
Michael Brosch ◽  
Eike Budinger ◽  
Henning Scheich

With a multielectrode system, we explored neuronal activity in the γ range (>40 Hz) in the primary and caudomedial auditory cortex of six anesthetized macaque monkeys. Stimuli were tone bursts of 100- to 500-ms duration that were presented at sound pressure levels of 40–60 dB and were varied over a wide range of frequencies. These stimuli induced γ oscillations, not phase-locked to the onset of stimulation, in 465 of 616 multiunit clusters and at 321 of 422 sites at which field potentials were recorded. Occurrence of γ activity was stimulus dependent. It was mostly seen when the stimulus was at the units' preferred frequency. The incidence of γ activity decreased with increasing difference between stimulus frequency and preferred frequency. γ activity emerged 100–900 ms after stimulus onset with highest incidence ∼120 ms. Amplitudes of stimulus-induced γ oscillations in field potentials were, on average, almost twice the amplitude of spontaneously occurring γ oscillations. γ activity at different sites within the primary and the caudomedial auditory field could be synchronized at near-zero phase. Synchrony depended on the spatial distance and on the receptive fields similarity of pairs of units. It decreased with increasing distance between recording sites and increased with similarity of preferred frequencies of the pairs of units. The results indicate that stimulus-induced γ oscillations originate from sources in the auditory cortex. They further suggest that γ oscillations may provide a mechanism utilized in many parts of the sensory cortex, including the auditory cortex, to integrate neurons according to the similarity of their receptive fields.


1995 ◽  
Vol 73 (5) ◽  
pp. 1876-1891 ◽  
Author(s):  
M. B. Calford ◽  
M. N. Semple

1. Several studies of auditory cortex have examined the competitive inhibition that can occur when appropriate sounds are presented to each ear. However, most cortical neurons also show both excitation and inhibition in response to presentation of stimuli at one ear alone. The extent of such inhibition has not been described. Forward masking, in which a variable masking stimulus was followed by a fixed probe stimulus (within the excitatory response area), was used to examine the extent of monaural inhibition for neurons in primary auditory cortex of anesthetized cats (barbiturate or barbiturate-ketamine). Both the masking and probe stimuli were 50-ms tone pips presented to the contralateral ear. Most cortical neurons showed significant forward masking at delays beyond which masking effects in the auditory nerve are relatively small compared with those seen in cortical neurons. Analysis was primarily concerned with such components. Standard rate-level functions were also obtained and were examined for nonmonotonicity, an indication of level-dependent monaural inhibition. 2. Consistent with previous reports, a wide range of frequency tuning properties (excitatory response area shapes) was found in cortical neurons. This was matched by a wide range of forward-masking-derived inhibitory response areas. At the most basic level of analysis, these were classified according to the presence of lateral inhibition, i.e., where a probe tone at a neuron's characteristic frequency was masked by tones outside the limits of the excitatory response area. Lateral inhibition was a property of 38% of the sampled neurons. Such neurons represented 77% of those with nonmonotonic rate-level functions, indicating a strong correlation between the two indexes of monaural inhibition; however, the shapes of forward masking inhibitory response areas did not usually correspond with those required to account for the "tuning" of a neuron. In addition, it was found that level-dependent inhibition was not added to by forward masking inhibition. 3. Analysis of the discharges to individual stimulus pair presentations, under conditions of partial masking, revealed that discharges to the probe occurred independently of discharges to the preceding masker. This indicates that even when the masker is within a neuron's excitatory response area, forward masking is not a postdischarge habituation phenomenon. However, for most neurons the degree of masking summed over multiple stimulus presentations appears determined by the same stimulus parameters that determine the probability of response to the masker.(ABSTRACT TRUNCATED AT 400 WORDS)


1988 ◽  
Vol 60 (6) ◽  
pp. 1799-1822 ◽  
Author(s):  
G. Langner ◽  
C. E. Schreiner

1. Temporal properties of single- and multiple-unit responses were investigated in the inferior colliculus (IC) of the barbiturate-anesthetized cat. Approximately 95% of recording sites were located in the central nucleus of the inferior colliculus (ICC). Responses to contralateral stimulation with tone bursts and amplitude-modulated tones (100% sinusoidal modulation) were recorded. Five response parameters were determined for neurons at each location: 1) characteristic frequency (CF); 2) onset latency of responses to CF-tones 60 dB above threshold; 3) Q10 dB (CF divided by bandwidth of tuning curve 10 dB above threshold); 4) best modulation frequency for firing rate (rBMF or BMF; amplitude modulation frequency that elicited the highest firing rate); and 5) best modulation frequency for synchronization (sBMF; amplitude modulation frequency that elicited the highest degree of phase-locking to the modulation frequency). 2. Response characteristics for single units and multiple units corresponded closely. A BMF was obtained at almost all recording sites. For units with a similar CF, a range of BMFs was observed. The upper limit of BMF increased approximately proportional to CF/4 up to BMFs as high as 1 kHz. The lower limit of encountered BMFs for a given CF also increased slightly with CF. BMF ranges for single-unit and multiple-unit responses were similar. Twenty-three percent of the responses revealed rBMFs between 10 and 30 Hz, 51% between 30 and 100 Hz, 18% between 100 and 300 Hz, and 8% between 300 and 1000 Hz. 3. For single units with modulation transfer functions of bandpass characteristics, BMFs determined for firing rate and synchronization were similar (r2 = 0.95). 4. Onset latencies for responses to CF tones 60 dB above threshold varied between 4 and 120 ms. Ninety percent of the onset latencies were between 5 and 18 ms. A range of onset latencies was recorded for different neurons with any given CF. The onset response latency of a given unit or unit cluster was significantly correlated with the period of the BMF and the period of the CF (P less than 0.05). 5."Intrinsic oscillations" of short duration, i.e., regularly timed discharges of units in response to stimuli without a corresponding temporal structure, were frequently observed in the ICC. Oscillation intervals were commonly found to be integer multiples of 0.4 ms. Changes of stimulus frequency or intensity had only minor influences on these intrinsic oscillations.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
Thomas C. van Leth ◽  
Hidde Leijnse ◽  
Aart Overeem ◽  
Remko Uijlenhoet

AbstractWe investigate the spatio-temporal structure of rainfall at spatial scales from 7m to over 200 km in the Netherlands. We used data from two networks of laser disdrometers with complementary interstation distances in two Dutch cities (comprising five and six disdrometers, respectively) and a Dutch nationwide network of 31 automatic rain gauges. The smallest aggregation interval for which raindrop size distributions were collected by the disdrometers was 30 s, while the automatic rain gauges provided 10-min rainfall sums. This study aims to supplement other micro-γ investigations (usually performed in the context of spatial rainfall variability within a weather radar pixel) with new data, while characterizing the correlation structure across an extended range of scales. To quantify the spatio-temporal variability, we employ a two-parameter exponential model fitted to the spatial correlograms and characterize the parameters of the model as a function of the temporal aggregation interval. This widely used method allows for a meaningful comparison with seven other studies across contrasting climatic settings all around the world. We also separately analyzed the intermittency of the rainfall observations. We show that a single parameterization, consisting of a two-parameter exponential spatial model as a function of interstation distance combined with a power-law model for decorrelation distance as a function of aggregation interval, can coherently describe rainfall variability (both spatial correlation and intermittency) across a wide range of scales. Limiting the range of scales to those typically found in micro-γ variability studies (including four of the seven studies to which we compare our results) skews the parameterization and reduces its applicability to larger scales.


2020 ◽  
Author(s):  
Yuan Yuan ◽  
Lei Lin

Satellite image time series (SITS) classification is a major research topic in remote sensing and is relevant for a wide range of applications. Deep learning approaches have been commonly employed for SITS classification and have provided state-of-the-art performance. However, deep learning methods suffer from overfitting when labeled data is scarce. To address this problem, we propose a novel self-supervised pre-training scheme to initialize a Transformer-based network by utilizing large-scale unlabeled data. In detail, the model is asked to predict randomly contaminated observations given an entire time series of a pixel. The main idea of our proposal is to leverage the inherent temporal structure of satellite time series to learn general-purpose spectral-temporal representations related to land cover semantics. Once pre-training is completed, the pre-trained network can be further adapted to various SITS classification tasks by fine-tuning all the model parameters on small-scale task-related labeled data. In this way, the general knowledge and representations about SITS can be transferred to a label-scarce task, thereby improving the generalization performance of the model as well as reducing the risk of overfitting. Comprehensive experiments have been carried out on three benchmark datasets over large study areas. Experimental results demonstrate the effectiveness of the proposed method, leading to a classification accuracy increment up to 1.91% to 6.69%. <div><b>This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.</b></div>


2020 ◽  
Vol 14 ◽  
Author(s):  
Marie Simonet ◽  
Paolo Ruggeri ◽  
Jérôme Barral

Motor inhibitory control (IC), the ability to suppress unwanted actions, has been previously shown to rely on domain-general IC processes that are involved in a wide range of IC tasks. Nevertheless, the existence of effector-specific regions and activation patterns that would differentiate manual vs. oculomotor response inhibition remains unknown. In this study, we investigated the brain dynamics supporting these two response effectors with the same IC task paradigm. We examined the behavioral performance and electrophysiological activity in a group of healthy young people (n = 25) with a Go/NoGo task using the index finger for the manual modality and the eyes for the oculomotor modality. By computing topographic analysis of variance, we found significant differences between topographies of scalp recorded potentials of the two response effectors between 250 and 325 ms post-stimulus onset. The source estimations localized this effect within the left precuneus, a part of the superior parietal lobule, showing stronger activity in the oculomotor modality than in the manual modality. Behaviorally, we found a significant positive correlation in response time between the two modalities. Our collective results revealed that while domain-general IC processes would be engaged across different response effectors in the same IC task, effector-specific activation patterns exist. In this case, the stronger activation of the left precuneus likely accounts for the increased demand for visual attentional processes in the oculomotor Go/NoGo task.


2005 ◽  
Vol 94 (4) ◽  
pp. 2970-2975 ◽  
Author(s):  
Rajiv Narayan ◽  
Ayla Ergün ◽  
Kamal Sen

Although auditory cortex is thought to play an important role in processing complex natural sounds such as speech and animal vocalizations, the specific functional roles of cortical receptive fields (RFs) remain unclear. Here, we study the relationship between a behaviorally important function: the discrimination of natural sounds and the structure of cortical RFs. We examine this problem in the model system of songbirds, using a computational approach. First, we constructed model neurons based on the spectral temporal RF (STRF), a widely used description of auditory cortical RFs. We focused on delayed inhibitory STRFs, a class of STRFs experimentally observed in primary auditory cortex (ACx) and its analog in songbirds (field L), which consist of an excitatory subregion and a delayed inhibitory subregion cotuned to a characteristic frequency. We quantified the discrimination of birdsongs by model neurons, examining both the dynamics and temporal resolution of discrimination, using a recently proposed spike distance metric (SDM). We found that single model neurons with delayed inhibitory STRFs can discriminate accurately between songs. Discrimination improves dramatically when the temporal structure of the neural response at fine timescales is considered. When we compared discrimination by model neurons with and without the inhibitory subregion, we found that the presence of the inhibitory subregion can improve discrimination. Finally, we modeled a cortical microcircuit with delayed synaptic inhibition, a candidate mechanism underlying delayed inhibitory STRFs, and showed that blocking inhibition in this model circuit degrades discrimination.


Sign in / Sign up

Export Citation Format

Share Document