Vestibular Signals in the Parasolitary Nucleus

2000 ◽  
Vol 83 (6) ◽  
pp. 3559-3569 ◽  
Author(s):  
N. H. Barmack ◽  
V. Yakhnitsa

Vestibular primary afferents project to secondary vestibular neurons located in the vestibular complex. Vestibular primary afferents also project to the uvula-nodulus of the cerebellum where they terminate on granule cells. In this report we describe the physiological properties of neurons in a “new” vestibular nucleus, the parasolitary nucleus (Psol). This nucleus consists of 2,300 GABAergic neurons that project onto the ipsilateral inferior olive (β-nucleus and dorsomedial cell column) as well as the nucleus reticularis gigantocellularis. These olivary neurons are the exclusive source of vestibularly modulated climbing fiber inputs to the cerebellum. We recorded the activity of Psol neurons during natural vestibular stimulation in anesthetized rabbits. The rabbits were placed in a three-axis rate table at the center of a large sphere, permitting vestibular and optokinetic stimulation. We recorded from 74 neurons in the Psol and from 23 neurons in the regions bordering Psol. The activity of 72/74 Psol neurons and 4/23 non-Psol neurons was modulated by vestibular stimulation in either the pitch or roll planes but not the horizontal plane. Psol neurons responded in phase with ipsilateral side-down head position or velocity during sinusoidal stimulation. Approximately 80% of the recorded Psol neurons responded to static roll-tilt. The optimal response planes of evoked vestibular responses were inferred from measurement of null planes. Optimal response planes usually were aligned with the anatomical orientation of one of the two ipsilateral vertical semicircular canals. The frequency dependence of null plane measurements indicated a convergence of vestibular information from otoliths and semicircular canals. None of the recorded neurons evinced optokinetic sensitivity. These results are consistent with the view that Psol neurons provide the vestibular signals to the inferior olive that eventually reached the cerebellum in the form of modulated climbing fiber discharges. These signals provide information about spatial orientation about the longitudinal axis.

1997 ◽  
Vol 78 (6) ◽  
pp. 3083-3094 ◽  
Author(s):  
H. Fushiki ◽  
N. H. Barmack

Fushiki, H. and N. H. Barmack. Topography and reciprocal activity of cerebellar Purkinje cells in the uvula-nodulus modulated by vestibular stimulation. J. Neurophysiol. 78: 3083–3094, 1997. In the rabbit uvula-nodulus, vestibular and optokinetic information is mapped onto parasagittal zones by climbing fibers. These zones are related functionally to different pairs of vertical semicircular canals, otolithic inputs and horizontal optokinetic inputs. Vestibular stimulation restricted to one of these zones modulates climbing fiber responses (CFRs). Within each of these zones, simple spikes (SSs) are modulated reciprocally with CFRs. In rabbits anesthetized with chloralose-urethan, we have used vestibular and optokinetic stimulation to evoke CFRs within a parasagittal zone while recording from Purkinje cells in adjacent zones. We have examined whether the CFRs evoked by vestibular stimulation in one zone influence the SSs of an adjacent zone. CFRs and SSs were recorded during roll vestibular stimulation. The orientation of the head of the rabbit with respect to the axis of rotation was varied systematically so that a climbing fiber null plane could be determined. This null plane was the orientation of the head about the vertical axis at which no modulation of the CFR was observed during rotation about the longitudinal axis of the vestibular rate table. In the left uvula-nodulus, a medial sagittal strip extending through all the folia contained Purkinje cells with CFRs that had optimal planes of stimulation coplanar with the left posterior-right anterior semicircular canals (LPC-RAC). Lateral to this strip was a strip of Purkinje cells with CFRs that were characterized by optimal planes corresponding to stimulation of the left anterior-right posterior semicircular canals (LAC-RPC). SSs in Purkinje cells were modulated out of phase with CFRs from the same Purkinje cell. The depth of modulation of both CFRs and SSs was reduced during rotation in the climbing fiber “null plane”. The depth of modulation of SSs was greatest when recorded from Purkinje cells located at the center of semicircular canal-related strip. We observed that 1) all folia of the uvula-nodulus receive vestibular climbing fiber inputs; 2) these climbing fiber inputs convey information from the vertical semicircular canals and otoliths but not the horizontal semicircular canals; 3) CFRs evoked in a particular sagittal zone do not influence SSs in adjacent zones; 4) modulation of a CFRs in a particular Purkinje cell can occur without modulation of SSs in the same Purkinje cell, although modulation of SSs was not observed in the absence of CFR modulation; and 5) modulation of SSs sometimes preceded that of CFRs in the same cell, implying that interneuronal pathways may contribute to SS modulation. Climbing fiber-driven Golgi cells, the inhibitory axon terminals of which end on granule cell dendrites in the classic glomerular synapse, may provide this interneuronal mechanism.


1995 ◽  
Vol 74 (6) ◽  
pp. 2573-2589 ◽  
Author(s):  
N. H. Barmack ◽  
H. Shojaku

1. The cerebellar uvula-nodulus receives vestibular projections from primary and secondary vestibular afferents as well as vestibularly related climbing fibers. It also receives visually related information from climbing fiber pathways. In this experiment we investigated how this information is mapped onto the uvula-nodulus. We studied the specificity, dynamics, and topographic distribution of climbing fiber responses (CFRs), simple spike responses, and mossy fiber terminal responses evoked by vestibular and optokinetic stimulation in rabbits anesthetized with alpha-chloralose. 2. Vestibularly evoked CFRs were found in the ventral uvula and nodulus. These responses were evoked during static roll tilt of the rabbit about a longitudinal axis and by sinusoidal oscillation about the longitudinal axis. Purely static responses were attributed to stimulation of the utricular otolith by the linear acceleration of gravity. CFRs that lacked a static component were attributed to activation of the semicircular canals. 3. Using a "null technique" we showed that the canal-sensitive CFRs were caused by stimulation of the anterior or posterior semicircular canals. Of the CFRs classified as canal related, 96% could be attributed to stimulation of the vertical semicircular canals. 4. Increases in CFRs were correlated with decreases in simple spike responses in half the Purkinje cells from which we recorded. These climbing-fiber-induced pauses in simple spikes occurred during spontaneous climbing fiber discharge as well as during climbing fiber discharge evoked by vestibular stimulation. The duration of this pause was inversely proportional to the spontaneous level of simple spikes before the occurrence of a CFR. In the other half of the recorded population of Purkinje cells, vestibularly driven CFRs did not alter the simple spike responses. 5. Vestibularly and visually mediated CFRs were topographically represented on the surface of the uvula-nodulus. CFRs driven by ipsilateral otolithic inputs were distributed over the entire mediolateral surface of the uvula-nodulus. CFRs driven by the ipsilateral posterior semicircular canal were distributed in a sagittal strip approximately 1.5 mm wide, extending laterally from the midline of the nodulus. CFRs driven exclusively by horizontal, posterior-->anterior optokinetic stimulation of the ipsilateral eye were distributed in a sagittal strip approximately 0.5 mm wide located 0.5-1.0 mm from the midline and restricted to the ventral nodulus. CFRs driven by the ipsilateral anterior semicircular canal were found in a sagittal strip approximately 1.0 mm wide extending 1.0-2.0 mm from the midline. 6. The sagittal, topographically arrayed climbing fiber strips effectively map a mediolateral gradient of possible postural responses based on vestibular and optokinetic information.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Timothy S Balmer ◽  
Laurence O Trussell

In vestibular cerebellum, primary afferents carry signals from single vestibular end organs, whereas secondary afferents from vestibular nucleus carry integrated signals. Selective targeting of distinct mossy fibers determines how the cerebellum processes vestibular signals. We focused on vestibular projections to ON and OFF classes of unipolar brush cells (UBCs), which transform single mossy fiber signals into long-lasting excitation or inhibition respectively, and impact the activity of ensembles of granule cells. To determine whether these contacts are indeed selective, connectivity was traced back from UBC to specific ganglion cell, hair cell and vestibular organ subtypes in mice. We show that a specialized subset of primary afferents contacts ON UBCs, but not OFF UBCs, while secondary afferents contact both subtypes. Striking anatomical differences were observed between primary and secondary afferents, their synapses, and the UBCs they contact. Thus, each class of UBC functions to transform specific signals through distinct anatomical pathways.


2019 ◽  
Author(s):  
Timothy S. Balmer ◽  
Laurence O. Trussell

AbstractIn vestibular cerebellum, primary afferents carry signals from single vestibular end organs, whereas secondary afferents from vestibular nucleus carry integrated signals. Selective targeting of distinct mossy fibers to postsynaptic cells determines how the cerebellum processes vestibular signals. We focused on vestibular projections to ON and OFF classes of unipolar brush cells (UBCs), which transform single mossy fiber signals into long-lasting excitation or inhibition respectively, and impact the activity of ensembles of granule cells. To determine whether these contacts are indeed selective, connectivity was traced back from UBC to specific ganglion cell, hair cell and vestibular organ subtypes. We show that a specialized subset of primary afferents contacts ON UBCs, but not OFF UBCs, while secondary afferents contact both subtypes. Striking anatomical differences were observed between primary and secondary afferents, their synapses, and the UBCs they contact. Thus, each class of UBC functions to transform specific signals through distinct anatomical pathways.


1988 ◽  
Vol 60 (5) ◽  
pp. 1753-1764 ◽  
Author(s):  
J. Kasper ◽  
R. H. Schor ◽  
V. J. Wilson

1. We have studied, in decerebrate cats, the responses of neurons in the lateral and descending vestibular nuclei to whole-body rotations in vertical planes that activated vertical semicircular canal and utricular receptors. Some neurons were identified as vestibulospinal by antidromic stimulation with floating electrodes placed in C4. 2. The direction of tilt that caused maximal excitation (response vector orientation) of each neuron was determined. Neuron dynamics were then studied with sinusoidal stimuli closely aligned with the response vector orientation, in the range 0.02-1 Hz. A few cells, for which we could not identify a response vector, probably had spatial-temporal convergence. 3. On the basis of dynamics, neurons were classified as receiving their input primarily from vertical semicircular canals, primarily from the otolith organs, or from canal+otolith convergence. 4. Response vector orientations of canal-driven neurons were often near +45 degrees or -45 degrees with respect to the transverse (roll) plane, suggesting these neurons received excitatory input from the ipsilateral anterior or posterior canal, respectively. Some neurons had canal-related dynamics but vector orientations near roll, presumably because they received convergent input from the ipsilateral anterior and posterior canals. Few neurons had their vectors near pitch. 5. In the lateral vestibular nucleus, neurons with otolith organ input (pure otolith or otolith+canal) tended to have vector orientations closer to roll than to pitch. In the descending nucleus the responses were evenly divided between the roll and pitch quadrants. 6. We conclude that most of our neurons have dynamics and response vector orientations that make them good candidates to participate in vestibulospinal reflexes acting on the limbs, but not those acting on the neck.


Author(s):  
Sang-Yoon Kim ◽  
Woochang Lim

We consider a cerebellar ring network for the optokinetic response (OKR), and investigate the effect of diverse recoding of granule (GR) cells on OKR by varybing the connection probability pc from Golgi to GR cells. For an optimal value of , individual GR cells exhibit diverse spiking patterns which are in-phase, anti-phase, or complex out-of-phase with respect to their population-averaged firing activity. Then, these diversely-recoded signals via parallel fibers (PFs) from GR cells are effectively depressed by the error-teaching signals via climbing fibers from the inferior olive which are also in-phase ones. Synaptic weights at in-phase PF-Purkinje cell (PC) synapses of active GR cells are strongly depressed via strong long-term depression (LTD), while those at anti-phase and complex out-of-phase PF-PC synapses are weakly depressed through weak LTD. This kind of “effective” depression (i.e., strong/weak LTD) at the PF-PC synapses causes a big modulation in firings of PCs, which then exert effective inhibitory coordination on the vestibular nucleus (VN) neuron (which evokes OKR). For the firing of the VN neuron, the learning gain degree ℒg, corresponding to the modulation gain ratio, increases with increasing the learning cycle, and it saturates at about the 300th cycle. By varying pc from , we find that a plot of saturated learning gain degree versus pc forms a bell-shaped curve with a peak at (where the diversity degree in spiking patterns of GR cells is also maximum). Consequently, the more diverse in recoding of GR cells, the more effective in motor learning for the OKR adaptation.


Development ◽  
1995 ◽  
Vol 121 (8) ◽  
pp. 2385-2395 ◽  
Author(s):  
K. Herrup ◽  
J.C. Busser

Unexpected nerve cell death has been reported in several experimental situations where neurons have been forced to re-enter the cell cycle after leaving the ventricular zone and entering the G0, non-mitotic stage. To determine whether an association between cell death and unscheduled cell cycling might be found in conjunction with any naturally occurring developmental events, we have examined target-related cell death in two neuronal populations, the granule cells of the cerebellar cortex and the neurons of the inferior olive. Both of these cell populations have a demonstrated developmental dependency on their synaptic target, the cerebellar Purkinje cell. Two mouse neurological mutants, staggerer (sg/sg) and lurcher (+/Lc), are characterized by intrinsic Purkinje cell deficiencies and, in both mutants, substantial numbers of cerebellar granule cells and inferior olive neurons die due to the absence of trophic support from their main postsynaptic target. We report here that the levels of three independent cell cycle markers--cyclin D, proliferating cell nuclear antigen and bromodeoxyuridine incorporation--are elevated in the granule cells before they die. Although lurcher Purkinje cells die during a similar developmental period, no compelling evidence for any cell cycle involvement in this instance of pre-programmed cell death could be found. While application of the TUNEL technique (in situ terminal transferase end-labeling of fragmented DNA) failed to label dying granule cells in either mutant, light and electron microscopic observations are consistent with the interpretation that the death of these cells is apoptotic in nature. Together, the data indicate that target-related cell death in the developing central nervous system is associated with a mechanism of cell death that involves an apparent loss of cell cycle control.


2004 ◽  
Vol 96 (6) ◽  
pp. 2301-2316 ◽  
Author(s):  
Richard C. Fitzpatrick ◽  
Brian L. Day

Galvanic vestibular stimulation (GVS) is a simple, safe, and specific way to elicit vestibular reflexes. Yet, despite a long history, it has only recently found popularity as a research tool and is rarely used clinically. The obstacle to advancing and exploiting GVS is that we cannot interpret the evoked responses with certainty because we do not understand how the stimulus acts as an input to the system. This paper examines the electrophysiology and anatomy of the vestibular organs and the effects of GVS on human balance control and develops a model that explains the observed balance responses. These responses are large and highly organized over all body segments and adapt to postural and balance requirements. To achieve this, neurons in the vestibular nuclei receive convergent signals from all vestibular receptors and somatosensory and cortical inputs. GVS sway responses are affected by other sources of information about balance but can appear as the sum of otolithic and semicircular canal responses. Electrophysiological studies showing similar activation of primary afferents from the otolith organs and canals and their convergence in the vestibular nuclei support this. On the basis of the morphology of the cristae and the alignment of the semicircular canals in the skull, rotational vectors calculated for every mode of GVS agree with the observed sway. However, vector summation of signals from all utricular afferents does not explain the observed sway. Thus we propose the hypothesis that the otolithic component of the balance response originates from only the pars medialis of the utricular macula.


1997 ◽  
Vol 78 (6) ◽  
pp. 3234-3248 ◽  
Author(s):  
I. M. Purcell ◽  
A. A. Perachio

Purcell, I. M. and A. A. Perachio. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil. J. Neurophysiol. 78: 3234–3248, 1997. Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within ±45° of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation areas of efferent terminal fields display a trend from smallest to largest for the central, peripheral, and planum types, respectively. Neurons that innervate the central zone of the crista do not extend into the peripheral or planum regions. Conversely, those neurons with terminal fields in the peripheral or planum regions do not innervate the central zone of the sensory neuroepithelium. The central zone of the crista is innervated preferentially by efferent neurons with cell bodies located in the ipsilateral group e. The peripheral and planum zones of the crista are innervated preferentially by efferent neurons with cell bodies located in the contralateral group e. A model incorporating our anatomic observations is presented describing an ipsilateral closed-loop feedback between ipsilateral efferent neurons and the periphery and an open-loop feed-forward innervation from contralateral efferent neurons. A possible role for the vestibular efferent neurons in the modulation of semicircular canal afferent response dynamics is proposed.


Sign in / Sign up

Export Citation Format

Share Document