Intracellular Features Predicted by Extracellular Recordings in the Hippocampus In Vivo

2000 ◽  
Vol 84 (1) ◽  
pp. 390-400 ◽  
Author(s):  
Darrell A. Henze ◽  
Zsolt Borhegyi ◽  
Jozsef Csicsvari ◽  
Akira Mamiya ◽  
Kenneth D. Harris ◽  
...  
2006 ◽  
Vol 95 (5) ◽  
pp. 3113-3128 ◽  
Author(s):  
Carl Gold ◽  
Darrell A. Henze ◽  
Christof Koch ◽  
György Buzsáki

Although extracellular unit recording is typically used for the detection of spike occurrences, it also has the theoretical ability to report about what are typically considered intracellular features of the action potential. We address this theoretical ability by developing a model system that captures features of experimentally recorded simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons. We use the line source approximation method of Holt and Koch to model the extracellular action potential (EAP) voltage resulting from the spiking activity of individual neurons. We compare the simultaneous intracellular and extracellular recordings of CA1 pyramidal neurons recorded in vivo with model predictions for the same cells reconstructed and simulated with compartmental models. The model accurately reproduces both the waveform and the amplitude of the EAPs, although it was difficult to achieve simultaneous good matches on both the intracellular and extracellular waveforms. This suggests that accounting for the EAP waveform provides a considerable constraint on the overall model. The developed model explains how and why the waveform varies with electrode position relative to the recorded cell. Interestingly, each cell's dendritic morphology had very little impact on the EAP waveform. The model also demonstrates that the varied composition of ionic currents in different cells is reflected in the features of the EAP.


1996 ◽  
Vol 76 (5) ◽  
pp. 2986-3001 ◽  
Author(s):  
H. E. Scharfman

1. Injection of aminooxyacetic acid (AOAA) into the entorhinal cortex in vivo produces acute seizures and cell loss in medial entorhinal cortex. To understand these effects, AOAA was applied directly to the medial entorhinal cortex in slices containing both the entorhinal cortex and hippocampus. Extracellular and intracellular recordings were made in both the entorhinal cortex and hippocampus to study responses to angular bundle stimulation and spontaneous activity. 2. AOAA was applied focally by leak from a micropipette or by pressure ejection. Evoked potentials increased gradually within 5 min of application, particularly the late, negative components. Evoked potentials continued to increase for up to 1 h, and these changes persisted for the remainder of the experiment (up to 5 h after drug application). 3. Paired pulse facilitation (100-ms interval) was also enhanced after AOAA application. Increasing stimulus frequency to 1-10 Hz increased evoked potentials further, and after several seconds of such stimulation multiple field potentials occurred. When stimulation was stopped at this point, repetitive field potentials occurred spontaneously for 1-2 min. These recordings, and simultaneous extracellular recordings in different layers, indicated that spontaneous synchronous activity occurred in entorhinal neurons. Intracellularly labeled cortical pyramidal cells depolarized and discharged during spontaneous and evoked field potentials. 4. The effects of AOAA were blocked reversibly by bath application of the N-methyl-D-aspartate (NMDA) receptor antagonist D-amino-5-phosphonovalerate (D-APV; 25 microM) or focal application of D-APV to the medial entorhinal cortex. 5. Simultaneous extracellular recordings from the entorhinal cortex and hippocampus demonstrated that spontaneous synchronous activity in layer III was often followed within several milliseconds by negative field potentials in the terminal zones of the perforant path (stratum moleculare of the dentate gyrus and stratum lacunosum-moleculare of area CA1). The extracellular potentials recorded in the dentate gyrus corresponded to excitatory postsynaptic potentials and action potentials in dentate granule cells. However, extracellular potentials in area CA1 were small and rarely correlated with discharge in CA1 pyramidal cells. 6. The results demonstrate that AOAA application leads to an NMDA-receptor-dependent enhancement of evoked potentials in medial entorhinal cortical neurons, which appears to be irreversible. The potentials can be facilitated by repetitive stimulation, and lead to synchronized discharges of entorhinal neurons. The discharges invade other areas such as the hippocampus, indicating how seizure activity may spread after AOAA injection in vivo. These data suggest that AOAA may be a useful tool to study longlasting changes in NMDA receptor function that lead to epileptiform activity and neurodegeneration.


Hippocampus ◽  
2006 ◽  
Vol 17 (1) ◽  
pp. 49-57 ◽  
Author(s):  
Indre V. Viskontas ◽  
Arne D. Ekstrom ◽  
Charles L. Wilson ◽  
Itzhak Fried

2020 ◽  
Author(s):  
Christian Cazares ◽  
Drew C. Schreiner ◽  
Christina M. Gremel

AbstractAlcohol dependence results in long-lasting deficits in decision-making and behavioral control. Neurobiological investigations have identified orbitofrontal cortex (OFC) as important for value contributions to decision-making as well as action control, and alcohol dependence induces long-lasting changes to OFC function that persist into protracted withdrawal. However, it is unclear which contributing OFC computations are disrupted in alcohol dependence. Here, we combined a well-validated mouse model of alcohol dependence with in vivo extracellular recordings during an instrumental task in which lever press duration serves as the contingency, and lever pressing is sensitive to outcome devaluation. We found prior alcohol dependence did not impair use of duration contingency control but did reduce sensitivity to outcome devaluation. Further, alcohol dependence increased OFC activity associated with lever-pressing but decreased OFC activity during outcome-related epochs. Hence, alcohol dependence induces a long-lasting disruption to OFC function such that activity associated with actions is enhanced, but OFC activity in relation to outcomes is diminished. This has important implications for hypotheses regarding compulsive and habitual phenotypes observed in addiction.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Javier Alegre-Cortés ◽  
María Sáez ◽  
Roberto Montanari ◽  
Ramon Reig

Behavioral studies differentiate the rodent dorsal striatum (DS) into lateral and medial regions; however, anatomical evidence suggests that it is a unified structure. To understand striatal dynamics and basal ganglia functions, it is essential to clarify the circuitry that supports this behavioral-based segregation. Here, we show that the mouse DS is made of two non-overlapping functional circuits divided by a boundary. Combining in vivo optopatch-clamp and extracellular recordings of spontaneous and evoked sensory activity, we demonstrate different coupling of lateral and medial striatum to the cortex together with an independent integration of the spontaneous activity, due to particular corticostriatal connectivity and local attributes of each region. Additionally, we show differences in slow and fast oscillations and in the electrophysiological properties between striatonigral and striatopallidal neurons. In summary, these results demonstrate that the rodent DS is segregated in two neuronal circuits, in homology with the caudate and putamen nuclei of primates.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Chang Hao Chen ◽  
Sio Hang Pun ◽  
Peng Un Mak ◽  
Mang I Vai ◽  
Achim Klug ◽  
...  

Glass micropipettes are widely used to record neural activity from single neurons or clusters of neurons extracellularly in live animals. However, to date, there has been no comprehensive study of noise in extracellular recordings with glass micropipettes. The purpose of this work was to assess various noise sources that affect extracellular recordings and to create model systems in which novel micropipette neural amplifier designs can be tested. An equivalent circuit of the glass micropipette and the noise model of this circuit, which accurately describe the various noise sources involved in extracellular recordings, have been developed. Measurement schemes using dead brain tissue as well as extracellular recordings from neurons in the inferior colliculus, an auditory brain nucleus of an anesthetized gerbil, were used to characterize noise performance and amplification efficacy of the proposed micropipette neural amplifier. According to our model, the major noise sources which influence the signal to noise ratio are the intrinsic noise of the neural amplifier and the thermal noise from distributed pipette resistance. These two types of noise were calculated and measured and were shown to be the dominating sources of background noise forin vivoexperiments.


2020 ◽  
Author(s):  
Carlos Castejon ◽  
Jesus Martin-Cortecero ◽  
Angel Nuñez

AbstractThe function of the higher-order sensory thalamus remains unresolved. Here, POm nucleus was examined by in vivo extracellular recordings across a range of complex sensory patterns. We found that POm was highly sensitive to multiwhisker stimuli involving complex spatiotemporal interactions. The dynamical spatiotemporal structure of sensory patterns and the different complexity of their parts were accurately reflected in precise POm activity changes. Importantly, POm was also able to respond to ipsilateral stimulation and was implicated in the representation of bilateral tactile events by integrating simultaneous signals arising from both whisker pads. We found that POm nuclei are mutually connected through the cortex forming a functional POm-POm loop. We unravelled the nature and content of the messages travelling through this loop showing that they were ‘structured patterns of sustained activity’. These structured messages were transmitted preserving their integrated structure. The implication of different cortical areas was investigated revealing that S1 plays a protagonist role in this functional loop. Our results also demonstrated different laminar implication in the processing of sustained activity in this cortical area and its transmission between hemispheres. We propose a theoretical model in which these ‘structured patterns of sustained activity’ generated by POm may play important roles in perceptual, motor and cognitive functions. From a functional perspective, this proposal, supported by the results described here, provides a novel theoretical framework to understand the implication of the thalamus in cognition. In addition, a profound difference was found between VPM and POm functioning. The hypothesis of Complementary Components is proposed here to explain it.HighlightsPOm is implicated in the representation of complex sensory patterns.POm is implicated in the encoding of bilateral tactile events.POm nuclei are mutually connected through the cortex forming a functional POm-POm loop.‘Structured patterns of sustained activity’ travelling through the loopAbstract Figure


Sign in / Sign up

Export Citation Format

Share Document